Abstract
Pseudomonas aeruginosa is a ubiquitous human pathogen that causes severe infections. Although antibiotics, such as tobramycin, are currently used for infection therapy, their antibacterial activity has resulted in the emergence of multiple antibiotic-resistant bacteria. The 6-gingerol analog, a structural derivative of the main component of ginger, is a quorum sensing (QS) inhibitor. However, it has a lower biofilm inhibitory activity than antibiotics and the possibility to cause toxicity in humans. Therefore, novel and more effective approaches for decreasing dosing concentration and increasing biofilm inhibitory activity are required to alleviate P. aeruginosa infections. In this study, a 6-gingerol analog was combined with tobramycin to treat P. aeruginosa infections. The combined treatment of 6- gingerol analog and tobramycin showed strong inhibitory activities on biofilm formation and the production of QS-related virulence factors of P. aeruginosa compared to single treatments. Furthermore, the combined treatment alleviated the infectivity of P. aeruginosa in an insect model using Tenebrio molitor larvae without inducing any cytotoxic effects in human lung epithelial cells. The 6-gingerol analog showed these inhibitory activities at much lower concentrations when used in combination with tobramycin. Adjuvant effects were observed through increased QS-disrupting processes rather than through antibacterial action. In particular, improved RhlR inactivation by this combination is a possible target for therapeutic development in LasR-independent chronic infections. Therefore, the combined treatment of 6-gingerol analog and tobramycin may be considered an effective method for treating P. aeruginosa infections.
Original language | English |
---|---|
Article number | e00192-21 |
Journal | Microbiology spectrum |
Volume | 9 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2021 Oct |
Externally published | Yes |
Keywords
- 6-gingerol analog
- Biofilm
- Infection
- Pseudomonas aeruginosa
- Tobramycin
ASJC Scopus subject areas
- Physiology
- Ecology
- Immunology and Microbiology(all)
- Genetics
- Microbiology (medical)
- Cell Biology
- Infectious Diseases