Comparative evaluation of Fe-, Zr-, and La-based metal-organic frameworks derived from recycled PET plastic bottles for arsenate removal

Pandi Kalimuthu, Youjin Kim, Muthu Prabhu Subbaiah, Daewhan Kim, Byong Hun Jeon, Jinho Jung

Research output: Contribution to journalArticlepeer-review

Abstract

Metal-organic frameworks (MOFs) derived from recycled polyester (polyethylene terephthalate, PET) bottles were investigated in both batch and column studies for the removal of arsenate. As-synthesized Fe-MOF, Zr-MOF, and La-MOF were systematically analyzed by SEM, PXRD, FTIR, BET, and XPS techniques. The obtained MOFs showed high crystallinity with the specific surface areas of 128.3, 290.4, and 61.8 m2/g for Fe-MOF, Zr-MOF, and La-MOF, respectively. The Langmuir isotherm and pseudo-second-order kinetic model simulated arsenate adsorption on MOF materials well, which can be explained by electrostatic interactions, surface complexation, and ligand exchange mechanisms. The maximum adsorption capacities of arsenate onto Fe-MOF, Zr-MOF, and La-MOF were found to be 70.02, 85.72, and 114.28 mg/g at pH 7, respectively. The effect of pH and co-existing anions on the arsenate adsorption on MOF materials was also evaluated for practical applications. The MOF materials showed reduced adsorption capacity for arsenate by less than 10% up to four cycles of regeneration and did not induce any significant (p > 0.05) acute toxicity (<2.5% mortality) in Daphnia magna. In a flow-through system, Fe-MOF, Zr-MOF, and La-MOF were used to treat 176, 255, and 398 mL bed volumes of arsenate contaminated water, respectively, and consistently reduced the concentration of arsenate ions from 500 to 10 μg/L. This study clearly demonstrated that MOF materials derived from waste PET bottles are economically promising adsorbents for the successful elimination of arsenate species from aqueous environments.

Original languageEnglish
Article number133672
JournalChemosphere
Volume294
DOIs
Publication statusPublished - 2022 May

Keywords

  • Arsenic
  • Metal-organic framework
  • Plastic recycling
  • Sorption
  • Water treatment

ASJC Scopus subject areas

  • Environmental Engineering
  • Chemistry(all)
  • Environmental Chemistry
  • Pollution
  • Public Health, Environmental and Occupational Health
  • Health, Toxicology and Mutagenesis

Fingerprint

Dive into the research topics of 'Comparative evaluation of Fe-, Zr-, and La-based metal-organic frameworks derived from recycled PET plastic bottles for arsenate removal'. Together they form a unique fingerprint.

Cite this