Complex Motor Imagery-based Brain-Computer Interface System: A Comparison between Different Classifiers

Seung Bo Lee, Min Kyung Jung, Hakseung Kim, Seong Whan Lee, Dong Joo Kim

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Motor imagery (MI) classification is important as the emerging research interest of brain computer interface (BCI) due to its potential about real-world application. Advancing manipulation and control technology of external devices such as robotics, the need of MI for complex and human-like movements is growing. The two most important procedures that influence the performance of MI-BCI are feature extraction and classification. Although there have been recent studies on feature extraction for complex, there is no consensus on the classifier suitable for complex MI. This study aimed to identify the best classifier for complex MI decoding.Electroencephalography (EEG) recordings measured during complex MI, which are hand grasping, spreading, pronation and supination, were used for binary (grasp vs. twist) and quaternary classification. Time domain parameter, which have shown suitability for complex movement decoding in previous works, was used as the EEG feature. Four types of ten machine learning classifiers, which have been applied to MI-BCI, were compared.Shrinkage regularized linear discriminant analysis (SRLDA) exhibited the best classification accuracy in both binary (92.8%) and quaternary (55.2%). In the case of training and testing time, a small amount of time for real-time analysis were needed, except random forest and logistic regression.This study showed that SRLDA is an appropriate classifier for complex MI classification, due to its ability to handle stationary and high dimensionality feature, TDP. The findings suggest that complex MI-BCI could gain more benefit from applying linear and shrinkage regularized model (i.e., SRLDA).

Original languageEnglish
Title of host publication2020 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2496-2501
Number of pages6
ISBN (Electronic)9781728185262
DOIs
Publication statusPublished - 2020 Oct 11
Event2020 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2020 - Toronto, Canada
Duration: 2020 Oct 112020 Oct 14

Publication series

NameConference Proceedings - IEEE International Conference on Systems, Man and Cybernetics
Volume2020-October
ISSN (Print)1062-922X

Conference

Conference2020 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2020
Country/TerritoryCanada
CityToronto
Period20/10/1120/10/14

ASJC Scopus subject areas

  • Electrical and Electronic Engineering
  • Control and Systems Engineering
  • Human-Computer Interaction

Fingerprint

Dive into the research topics of 'Complex Motor Imagery-based Brain-Computer Interface System: A Comparison between Different Classifiers'. Together they form a unique fingerprint.

Cite this