Conductive polylactic-acid filament for dose monitoring in syringe-less wearable infusion pump

Sangbin Jeon, Beelee Chua

Research output: Contribution to journalArticle

Abstract

We have demonstrated the use of conductive polylactic acid (PLA) filament for dose monitoring in a syringe-less wearable infusion pump. A channel reservoir is inlaid with conductive PLA filament. As the liquid medium is dispensed via gas pressurization by an built-in electrolysis chamber, the effective impedance of the conductive PLA filament/liquid medium column changes as well. This allows the dispensed volume to be monitored via the output voltage across a series resistor. Using 5 V sinusoidal input voltage, the output voltage decreased from ∼1.3 to ∼0.13 V as the dispensed volume of 0.1 mol/L PBS increased from 0 to 1000 μL. Similarly, the output voltage for insulin analog decreased from ∼0.64 to 0.126 V for the same volume displaced. Repeated dispensing runs with 0.1 mol/L PBS showed good consistency (standard deviation less than 10 mV). The rate of change of the output voltage with elapsed time varied accordingly for the different flow rates (0.25–1.00 mL/h or ∼4–17 μL/min). At electrolysis voltages of 1.5 and 5 V, the respective output voltage were 1.04 and 0.33 V. These corresponded to flow rates of ∼3 and 10 mL/h (∼50 and 160 μL/ min).

Original languageEnglish
Pages (from-to)1080-1089
Number of pages10
JournalSensors and Actuators, B: Chemical
Volume258
DOIs
Publication statusPublished - 2018 Apr 1

Fingerprint

syringes
Syringes
filaments
Pumps
pumps
dosage
acids
Acids
Monitoring
Electric potential
electric potential
output
electrolysis
Electrolysis
flow velocity
Flow rate
insulin
Pressurization
Insulin
Liquids

Keywords

  • Dose monitoring
  • Infusion pump
  • Insulin analog
  • PLA filament
  • Wearable

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Instrumentation
  • Condensed Matter Physics
  • Surfaces, Coatings and Films
  • Metals and Alloys
  • Electrical and Electronic Engineering
  • Materials Chemistry

Cite this

Conductive polylactic-acid filament for dose monitoring in syringe-less wearable infusion pump. / Jeon, Sangbin; Chua, Beelee.

In: Sensors and Actuators, B: Chemical, Vol. 258, 01.04.2018, p. 1080-1089.

Research output: Contribution to journalArticle

@article{1b7f85d13b7147d4bf02ffdf9896d591,
title = "Conductive polylactic-acid filament for dose monitoring in syringe-less wearable infusion pump",
abstract = "We have demonstrated the use of conductive polylactic acid (PLA) filament for dose monitoring in a syringe-less wearable infusion pump. A channel reservoir is inlaid with conductive PLA filament. As the liquid medium is dispensed via gas pressurization by an built-in electrolysis chamber, the effective impedance of the conductive PLA filament/liquid medium column changes as well. This allows the dispensed volume to be monitored via the output voltage across a series resistor. Using 5 V sinusoidal input voltage, the output voltage decreased from ∼1.3 to ∼0.13 V as the dispensed volume of 0.1 mol/L PBS increased from 0 to 1000 μL. Similarly, the output voltage for insulin analog decreased from ∼0.64 to 0.126 V for the same volume displaced. Repeated dispensing runs with 0.1 mol/L PBS showed good consistency (standard deviation less than 10 mV). The rate of change of the output voltage with elapsed time varied accordingly for the different flow rates (0.25–1.00 mL/h or ∼4–17 μL/min). At electrolysis voltages of 1.5 and 5 V, the respective output voltage were 1.04 and 0.33 V. These corresponded to flow rates of ∼3 and 10 mL/h (∼50 and 160 μL/ min).",
keywords = "Dose monitoring, Infusion pump, Insulin analog, PLA filament, Wearable",
author = "Sangbin Jeon and Beelee Chua",
year = "2018",
month = "4",
day = "1",
doi = "10.1016/j.snb.2017.12.014",
language = "English",
volume = "258",
pages = "1080--1089",
journal = "Sensors and Actuators, B: Chemical",
issn = "0925-4005",
publisher = "Elsevier",

}

TY - JOUR

T1 - Conductive polylactic-acid filament for dose monitoring in syringe-less wearable infusion pump

AU - Jeon, Sangbin

AU - Chua, Beelee

PY - 2018/4/1

Y1 - 2018/4/1

N2 - We have demonstrated the use of conductive polylactic acid (PLA) filament for dose monitoring in a syringe-less wearable infusion pump. A channel reservoir is inlaid with conductive PLA filament. As the liquid medium is dispensed via gas pressurization by an built-in electrolysis chamber, the effective impedance of the conductive PLA filament/liquid medium column changes as well. This allows the dispensed volume to be monitored via the output voltage across a series resistor. Using 5 V sinusoidal input voltage, the output voltage decreased from ∼1.3 to ∼0.13 V as the dispensed volume of 0.1 mol/L PBS increased from 0 to 1000 μL. Similarly, the output voltage for insulin analog decreased from ∼0.64 to 0.126 V for the same volume displaced. Repeated dispensing runs with 0.1 mol/L PBS showed good consistency (standard deviation less than 10 mV). The rate of change of the output voltage with elapsed time varied accordingly for the different flow rates (0.25–1.00 mL/h or ∼4–17 μL/min). At electrolysis voltages of 1.5 and 5 V, the respective output voltage were 1.04 and 0.33 V. These corresponded to flow rates of ∼3 and 10 mL/h (∼50 and 160 μL/ min).

AB - We have demonstrated the use of conductive polylactic acid (PLA) filament for dose monitoring in a syringe-less wearable infusion pump. A channel reservoir is inlaid with conductive PLA filament. As the liquid medium is dispensed via gas pressurization by an built-in electrolysis chamber, the effective impedance of the conductive PLA filament/liquid medium column changes as well. This allows the dispensed volume to be monitored via the output voltage across a series resistor. Using 5 V sinusoidal input voltage, the output voltage decreased from ∼1.3 to ∼0.13 V as the dispensed volume of 0.1 mol/L PBS increased from 0 to 1000 μL. Similarly, the output voltage for insulin analog decreased from ∼0.64 to 0.126 V for the same volume displaced. Repeated dispensing runs with 0.1 mol/L PBS showed good consistency (standard deviation less than 10 mV). The rate of change of the output voltage with elapsed time varied accordingly for the different flow rates (0.25–1.00 mL/h or ∼4–17 μL/min). At electrolysis voltages of 1.5 and 5 V, the respective output voltage were 1.04 and 0.33 V. These corresponded to flow rates of ∼3 and 10 mL/h (∼50 and 160 μL/ min).

KW - Dose monitoring

KW - Infusion pump

KW - Insulin analog

KW - PLA filament

KW - Wearable

UR - http://www.scopus.com/inward/record.url?scp=85037668175&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85037668175&partnerID=8YFLogxK

U2 - 10.1016/j.snb.2017.12.014

DO - 10.1016/j.snb.2017.12.014

M3 - Article

AN - SCOPUS:85037668175

VL - 258

SP - 1080

EP - 1089

JO - Sensors and Actuators, B: Chemical

JF - Sensors and Actuators, B: Chemical

SN - 0925-4005

ER -