Congruences for siegel modular forms

Dohoon Choi, Young Ju Choie, Olav K. Richter

Research output: Contribution to journalArticle

7 Citations (Scopus)

Abstract

We employ recent results on Jacobi forms to investigate congruences and filtrations of Siegel modular forms of degree 2. In particular, we determine when an analog of Atkin's U(p)-operator applied to a Siegel modular form of degree 2 is nonzero modulo a prime p. Furthermore, we discuss explicit examples to illustrate our results.

Original languageEnglish
Pages (from-to)1455-1466
Number of pages12
JournalAnnales de l'Institut Fourier
Volume61
Issue number4
DOIs
Publication statusPublished - 2011 Dec 1
Externally publishedYes

Fingerprint

Siegel Modular Forms
Congruence
Jacobi Forms
Filtration
Modulo
Analogue
Operator

Keywords

  • Congruences
  • Siegel modular forms

ASJC Scopus subject areas

  • Algebra and Number Theory
  • Geometry and Topology

Cite this

Congruences for siegel modular forms. / Choi, Dohoon; Choie, Young Ju; Richter, Olav K.

In: Annales de l'Institut Fourier, Vol. 61, No. 4, 01.12.2011, p. 1455-1466.

Research output: Contribution to journalArticle

Choi, Dohoon ; Choie, Young Ju ; Richter, Olav K. / Congruences for siegel modular forms. In: Annales de l'Institut Fourier. 2011 ; Vol. 61, No. 4. pp. 1455-1466.
@article{3b4a862355c640c8bd001c4273099458,
title = "Congruences for siegel modular forms",
abstract = "We employ recent results on Jacobi forms to investigate congruences and filtrations of Siegel modular forms of degree 2. In particular, we determine when an analog of Atkin's U(p)-operator applied to a Siegel modular form of degree 2 is nonzero modulo a prime p. Furthermore, we discuss explicit examples to illustrate our results.",
keywords = "Congruences, Siegel modular forms",
author = "Dohoon Choi and Choie, {Young Ju} and Richter, {Olav K.}",
year = "2011",
month = "12",
day = "1",
doi = "10.5802/aif.2646",
language = "English",
volume = "61",
pages = "1455--1466",
journal = "Annales de l'Institut Fourier",
issn = "0373-0956",
publisher = "Association des Annales de l'Institut Fourier",
number = "4",

}

TY - JOUR

T1 - Congruences for siegel modular forms

AU - Choi, Dohoon

AU - Choie, Young Ju

AU - Richter, Olav K.

PY - 2011/12/1

Y1 - 2011/12/1

N2 - We employ recent results on Jacobi forms to investigate congruences and filtrations of Siegel modular forms of degree 2. In particular, we determine when an analog of Atkin's U(p)-operator applied to a Siegel modular form of degree 2 is nonzero modulo a prime p. Furthermore, we discuss explicit examples to illustrate our results.

AB - We employ recent results on Jacobi forms to investigate congruences and filtrations of Siegel modular forms of degree 2. In particular, we determine when an analog of Atkin's U(p)-operator applied to a Siegel modular form of degree 2 is nonzero modulo a prime p. Furthermore, we discuss explicit examples to illustrate our results.

KW - Congruences

KW - Siegel modular forms

UR - http://www.scopus.com/inward/record.url?scp=84856483114&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84856483114&partnerID=8YFLogxK

U2 - 10.5802/aif.2646

DO - 10.5802/aif.2646

M3 - Article

AN - SCOPUS:84856483114

VL - 61

SP - 1455

EP - 1466

JO - Annales de l'Institut Fourier

JF - Annales de l'Institut Fourier

SN - 0373-0956

IS - 4

ER -