TY - GEN
T1 - Constructing 4D infant cortical surface atlases based on dynamic developmental trajectories of the cortex
AU - Li, Gang
AU - Wang, Li
AU - Shi, Feng
AU - Lin, Weili
AU - Shen, Dinggang
PY - 2014
Y1 - 2014
N2 - Cortical surface atlases play an increasingly important role for analysis, visualization, and comparison of results across different neuroimaging studies. As the first two years of life is the most dynamic period of postnatal structural and functional development of the highly-folded cerebral cortex, longitudinal (4D) cortical surface atlases for the infant brains during this period is highly desired yet still lacking for early brain development studies. In this paper, we construct the first longitudinal (4D) cortical surface atlases for the dynamic developing infant cortical structures at 1, 3, 6, 9, 12, 18 and 24 months of age, based on 202 serial MRI scans from 35 healthy infants. To ensure longitudinal consistency and unbiasedness of the 4D infant cortical surface atlases, we first compute the within-subject mean cortical folding geometries by groupwise registration of longitudinal surfaces of each infant. Then we establish intersubject cortical correspondences by groupwise registration of the within-subject mean cortical folding geometries of all infants. More importantly, for the first time, we further parcellate the 4D infant surface atlases into developmentally and functionally distinctive regions based solely on the dynamic developmental trajectories of the cortical thickness, by using the spectral clustering method. Specifically, to deal with the problem that each infant has different number of scans, we first compute the within-subject affinity matrix of vertices' cortical thickness trajectories of each infant, and then we use the averaged affinity matrix of all infants for parcellation. Our constructed 4D infant cortical surface atlases with developmental trajectories based parcellation will greatly facilitate the surface-based analysis of dynamic brain development in infants.
AB - Cortical surface atlases play an increasingly important role for analysis, visualization, and comparison of results across different neuroimaging studies. As the first two years of life is the most dynamic period of postnatal structural and functional development of the highly-folded cerebral cortex, longitudinal (4D) cortical surface atlases for the infant brains during this period is highly desired yet still lacking for early brain development studies. In this paper, we construct the first longitudinal (4D) cortical surface atlases for the dynamic developing infant cortical structures at 1, 3, 6, 9, 12, 18 and 24 months of age, based on 202 serial MRI scans from 35 healthy infants. To ensure longitudinal consistency and unbiasedness of the 4D infant cortical surface atlases, we first compute the within-subject mean cortical folding geometries by groupwise registration of longitudinal surfaces of each infant. Then we establish intersubject cortical correspondences by groupwise registration of the within-subject mean cortical folding geometries of all infants. More importantly, for the first time, we further parcellate the 4D infant surface atlases into developmentally and functionally distinctive regions based solely on the dynamic developmental trajectories of the cortical thickness, by using the spectral clustering method. Specifically, to deal with the problem that each infant has different number of scans, we first compute the within-subject affinity matrix of vertices' cortical thickness trajectories of each infant, and then we use the averaged affinity matrix of all infants for parcellation. Our constructed 4D infant cortical surface atlases with developmental trajectories based parcellation will greatly facilitate the surface-based analysis of dynamic brain development in infants.
KW - Infant
KW - atlas construction
KW - cortical surface
KW - surface parcellation
UR - http://www.scopus.com/inward/record.url?scp=84906974360&partnerID=8YFLogxK
U2 - 10.1007/978-3-319-10443-0_12
DO - 10.1007/978-3-319-10443-0_12
M3 - Conference contribution
C2 - 25320786
AN - SCOPUS:84906974360
SN - 9783319104423
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 89
EP - 96
BT - Medical Image Computing and Computer-Assisted Intervention, MICCAI 2014 - 17th International Conference, Proceedings
PB - Springer Verlag
T2 - 17th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2014
Y2 - 14 September 2014 through 18 September 2014
ER -