TY - JOUR
T1 - Construction of Uniform Monolayer- and Orientation-Tunable Enzyme Electrode by a Synthetic Glucose Dehydrogenase without Electron-Transfer Subunit via Optimized Site-Specific Gold-Binding Peptide Capable of Direct Electron Transfer
AU - Lee, Yoo Seok
AU - Baek, Seungwoo
AU - Lee, Hyeryeong
AU - Reginald, Stacy Simai
AU - Kim, Yeongeun
AU - Kang, Hyunsoo
AU - Choi, In Geol
AU - Chang, In Seop
N1 - Funding Information:
This study was supported by grants from the National Research Foundation of Korea (NRF), funds from the Korean Government (2016R1A2B3015426), and the GIST Research Institute (GRI) in 2018. Special thanks go to Prof. Hohjai Lee for insightful discussions on electrochemistry.
Publisher Copyright:
© 2018 American Chemical Society.
PY - 2018/8/29
Y1 - 2018/8/29
N2 - Direct electron transfer (DET) between enzymes and electrodes is a key issue for practical use of bioelectrocatalytic devices as a bioenergy process, such as enzymatic electrosynthesis, biosensors, and enzyme biofuel cells. To date, based on the DET of bioelectrocatalysis, less than 1% of the calculated theoretical current was transferred to final electron acceptor due to energy loss at enzyme-electrode interface. This study describes the design and construction of a synthetic glucose dehydrogenase (GDH; α and γ subunits) combined with a gold-binding peptide at its amino or carboxy terminus for direct contact between enzyme and electrode. The fused gold-binding peptide facilitated stable immobilization of GDH and constructed uniform monolayer of GDH onto a Au electrode. Depending on the fused site of binding peptide to the enzyme complex, nine combinations of recombinant GDH proteins on the electrode show significantly different direct electron-transfer efficiency across the enzyme-electrode interface. The fusion of site-specific binding peptide to the catalytic subunit (α subunit, carboxy terminus) of the enzyme complex enabled apparent direct electron transfer (DET) across the enzyme-electrode interface even in the absence of the electron-transfer subunit (i.e., β subunit having cytochrome domain). The catalytic glucose oxidation current at an onset potential of ca. (-)0.46 V vs Ag/AgCl was associated with the appearance of an flavin adenine dinucleotide (FAD)/FADH2 redox wave and a stabilized bioelectrocatalytic current of more than 100 μA, determined from chronoamperometric analysis. Electron recovery was 7.64%, and the catalytic current generation was 249 μA per GDH enzyme loading unit (U), several orders of magnitude higher than the values reported previously. These observations corroborated that the last electron donor facing to electrode was controlled to be in close proximity without electron-transfer intermediates and the native affinity for glucose was preserved. The design and construction of the site-specific "sticky-ended" proteins without loss of catalytic activity could be applied to other redox enzymes having a buried active site.
AB - Direct electron transfer (DET) between enzymes and electrodes is a key issue for practical use of bioelectrocatalytic devices as a bioenergy process, such as enzymatic electrosynthesis, biosensors, and enzyme biofuel cells. To date, based on the DET of bioelectrocatalysis, less than 1% of the calculated theoretical current was transferred to final electron acceptor due to energy loss at enzyme-electrode interface. This study describes the design and construction of a synthetic glucose dehydrogenase (GDH; α and γ subunits) combined with a gold-binding peptide at its amino or carboxy terminus for direct contact between enzyme and electrode. The fused gold-binding peptide facilitated stable immobilization of GDH and constructed uniform monolayer of GDH onto a Au electrode. Depending on the fused site of binding peptide to the enzyme complex, nine combinations of recombinant GDH proteins on the electrode show significantly different direct electron-transfer efficiency across the enzyme-electrode interface. The fusion of site-specific binding peptide to the catalytic subunit (α subunit, carboxy terminus) of the enzyme complex enabled apparent direct electron transfer (DET) across the enzyme-electrode interface even in the absence of the electron-transfer subunit (i.e., β subunit having cytochrome domain). The catalytic glucose oxidation current at an onset potential of ca. (-)0.46 V vs Ag/AgCl was associated with the appearance of an flavin adenine dinucleotide (FAD)/FADH2 redox wave and a stabilized bioelectrocatalytic current of more than 100 μA, determined from chronoamperometric analysis. Electron recovery was 7.64%, and the catalytic current generation was 249 μA per GDH enzyme loading unit (U), several orders of magnitude higher than the values reported previously. These observations corroborated that the last electron donor facing to electrode was controlled to be in close proximity without electron-transfer intermediates and the native affinity for glucose was preserved. The design and construction of the site-specific "sticky-ended" proteins without loss of catalytic activity could be applied to other redox enzymes having a buried active site.
KW - direct electron transfer
KW - electron tunneling distance
KW - gold-binding peptide
KW - orientation
KW - synthetic glucose dehydrogenase
UR - http://www.scopus.com/inward/record.url?scp=85052313807&partnerID=8YFLogxK
U2 - 10.1021/acsami.8b08876
DO - 10.1021/acsami.8b08876
M3 - Article
C2 - 30067023
AN - SCOPUS:85052313807
SN - 1944-8244
VL - 10
SP - 28615
EP - 28626
JO - ACS applied materials & interfaces
JF - ACS applied materials & interfaces
IS - 34
ER -