Abstract
Films made of 2D networks of single-walled carbon nanotubes (SWNTs) are one of the most promising active-channel materials for field-effect transistors (FETs) and have a variety of flexible electronic applications, ranging from biological and chemical sensors to high-speed switching devices. Challenges, however, still remain due to the current hysteresis of SWNT-containing FETs, which has hindered further development. A new and robust method to control the current hysteresis of a SWNT-network FET is presented, which involves the non-volatile polarization of a ferroelectric poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) gate insulator. A top-gate FET with a solution-processed SWNT-network exhibits significant suppression of the hysteresis when the gate-voltage sweep is greater than the coercive field of the ferroelectric polymer layer (≈50 MV m-1). These near-hysteresis-free characteristics are believed to be due to the characteristic hysteresis of the P(VDF-TrFE), resulting from its non-volatile polarization, which makes effective compensation for the current hysteresis of the SWNT-network FETs. The onset voltage for hysteresis-minimized operation is able to be tuned simply by controlling the thickness of the ferroelectric film, which opens the possibility of operating hysteresis-free devices with gate voltages down to a few volts. A simple and robust method is developed to control the characteristic current hysteresis of single-walled carbon nanotube (SWNT) network field-effect transistiors (FETs) by non-volatile ferroelectric polarization. A top-gate FET with a solution-processed SWNT network channel layer and a ferroelectric poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) gate insulator effectively suppresses the current hysteresis when the gate-voltage sweep exceeds the coercive voltage of the P(VDF-TrFE) film.
Original language | English |
---|---|
Pages (from-to) | 1120-1128 |
Number of pages | 9 |
Journal | Advanced Functional Materials |
Volume | 23 |
Issue number | 9 |
DOIs | |
Publication status | Published - 2013 Mar 6 |
Externally published | Yes |
Keywords
- ferroelectric polymer insulators
- field-effect transistors
- hysteresis
- nanocomposites
- networked single-walled carbon nanotubes
- poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE))
ASJC Scopus subject areas
- Chemistry(all)
- Materials Science(all)
- Condensed Matter Physics