Controlling Energy Levels and Blend Morphology for All-Polymer Solar Cells via Fluorination of a Naphthalene Diimide-Based Copolymer Acceptor

Mohammad Afsar Uddin, Youngkwon Kim, Robert Younts, Wonho Lee, Bhoj Gautam, Joonhyeong Choi, Cheng Wang, Kenan Gundogdu, Bumjoon J. Kim, Han Young Woo

Research output: Contribution to journalArticlepeer-review

64 Citations (Scopus)

Abstract

We investigate the photovoltaic properties and charge dynamics of all polymer solar cells (all-PSCs) based on poly[(N,N'-bis(2-octyldodecyl)naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl)-alt-5,5′-(2,2′-bithiophene)] (P(NDI2OD-T2)) and its fluorinated analogue, poly[(N,N'-bis(2-octyldodecyl)naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl)-alt-5,5′-(3,3′-difluoro-2,2′-bithiophene)] (P(NDI2OD-T2F)), as the acceptor polymer and poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b′]dithiophene-alt-5-octyl-4H-thieno[3,4-c]pyrrole-4,6(5H)-dione] (PBDTTTPD) as the donor polymer. The PBDTTTPD:P(NDI2OD-T2)-based device has a high open-circuit voltage (VOC) of 1.03 V but suffers from low power conversion efficiency (PCE) of 2.02% with a short-circuit current density (JSC) and fill factor (FF) of 4.45 mA cm-2 and 0.44, respectively. In a stark contrast, the PCE of PBDTTTPD:P(NDI2OD-T2F)-based PSC dramatically increases to 6.09% (VOC = 1.00 V, JSC = 11.68 mA cm-2, and FF = 0.52). These results are attributed to the fluorination, which removes the energetic barrier for hole transfer and promotes the formation of the donor/acceptor blend morphology with suppressed phase separation and enhanced intermixed phases. The detailed charge dynamics examined by femtosecond transient absorption spectroscopy suggests the significantly increased hole transfer efficiency and larger populations of long-lived polarons for PBDTTTPD:P(NDI2OD-T2F).

Original languageEnglish
Pages (from-to)6374-6383
Number of pages10
JournalMacromolecules
Volume49
Issue number17
DOIs
Publication statusPublished - 2016 Sept 13

ASJC Scopus subject areas

  • Organic Chemistry
  • Polymers and Plastics
  • Inorganic Chemistry
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Controlling Energy Levels and Blend Morphology for All-Polymer Solar Cells via Fluorination of a Naphthalene Diimide-Based Copolymer Acceptor'. Together they form a unique fingerprint.

Cite this