Copper-Halide Polymer Nanowires as Versatile Supports for Single-Atom Catalysts

Min Seok Kim, Haedong Park, Sung Ok Won, Aditya Sharma, Jimin Kong, Hyun S. Park, Yun Mo Sung, Tae Joon Park, Myoung Woon Moon, Kahyun Hur

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

Single-atom catalysts are heterogeneous catalysts with atomistically dispersed atoms acting as a catalytically active center, and have recently attracted much attention owing to the minimal use of noble metals. However, a scalable and inexpensive support that can stably anchor isolated atoms remains a challenge due to high surface energy. Here, copper-halide polymer nanowires with sub-nanometer pores are proposed as a versatile support for single-atom catalysts. The synthesis of the nanowires is straightforward and completed in a few minutes. Well-defined sub-nanometer pores and a large free volume of the nanowires are advantageous over any other support material. The nanowires can anchor various atomistically dispersed metal atoms into the sub-nanometer pores up to ≈3 at% via a simple solution process, and this value is at least twice as big as previously reported data. The hydrogen evolution reaction activity of −18.0 A mgPt −1 at −0.2 V overpotential shows its potential for single-atom catalysts support.

Original languageEnglish
Article number1903197
JournalSmall
DOIs
Publication statusPublished - 2019 Jan 1

    Fingerprint

Keywords

  • copper-halide polymer nanowires
  • hydrogen evolution reaction
  • inorganic polymers
  • single-atom catalyst supports

ASJC Scopus subject areas

  • Biotechnology
  • Biomaterials
  • Chemistry(all)
  • Materials Science(all)
  • Engineering (miscellaneous)

Cite this

Kim, M. S., Park, H., Won, S. O., Sharma, A., Kong, J., Park, H. S., Sung, Y. M., Park, T. J., Moon, M. W., & Hur, K. (2019). Copper-Halide Polymer Nanowires as Versatile Supports for Single-Atom Catalysts. Small, [1903197]. https://doi.org/10.1002/smll.201903197