Abstract
Various morphologies of Co-containing precursors such as nanorods, nanosheets, and nanocubes were prepared by controlling the solvothermal reaction using cobalt acetate, L(+)-lysine, and oxalic acid, all of which were successfully converted into Co3O4 nanostructures without morphological variation. The gas responses of these Co3O4 nanosheets, nanorods, and nanocubes to 100 ppm C2H5OH at 300 °C were 10.5, 4.7, and 4.5 times higher than those of the Co3O4 agglomerated nanopowders, respectively. In addition, the selectivity to C2H5OH over CO and H2, as well as the response/recovery kinetics, were significantly improved. These enhanced gas-sensing characteristics were attributed to the less agglomerated nanostructures of the sensing materials.
Original language | English |
---|---|
Pages (from-to) | 183-189 |
Number of pages | 7 |
Journal | Sensors and Actuators, B: Chemical |
Volume | 146 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2010 Apr 8 |
Keywords
- CHOH sensor
- CoO
- Gas sensors
- Nanostructures
- Response/recovery time
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Instrumentation
- Condensed Matter Physics
- Surfaces, Coatings and Films
- Metals and Alloys
- Electrical and Electronic Engineering
- Materials Chemistry