Current-induced alternating reversed dual-echo-steady-state for joint estimation of tissue relaxation and electrical properties

Hyunyeol Lee, Chul Ho Sohn, Jaeseok Park

Research output: Contribution to journalArticle


Purpose: To develop a current-induced, alternating reversed dual-echo-steady-state-based magnetic resonance electrical impedance tomography for joint estimation of tissue relaxation and electrical properties. Methods: The proposed method reverses the readout gradient configuration of conventional, in which steady-state-free-precession (SSFP)-ECHO is produced earlier than SSFP-free-induction-decay (FID) while alternating current pulses are applied in between the two SSFPs to secure high sensitivity of SSFP-FID to injection current. Additionally, alternating reversed dual-echo-steady-state signals are modulated by employing variable flip angles over two orthogonal injections of current pulses. Ratiometric signal models are analytically constructed, from which T1, T2, and current-induced Bz are jointly estimated by solving a nonlinear inverse problem for conductivity reconstruction. Numerical simulations and experimental studies are performed to investigate the feasibility of the proposed method in estimating relaxation parameters and conductivity. Results: The proposed method, if compared with conventional magnetic resonance electrical impedance tomography, enables rapid data acquisition and simultaneous estimation of T1, T2, and current-induced Bz, yielding a comparable level of signal-to-noise ratio in the parameter estimates while retaining a relative conductivity contrast. Conclusion: We successfully demonstrated the feasibility of the proposed method in jointly estimating tissue relaxation parameters as well as conductivity distributions. It can be a promising, rapid imaging strategy for quantitative conductivity estimation.

Original languageEnglish
JournalMagnetic Resonance in Medicine
Publication statusAccepted/In press - 2016



  • Alternating steady-state-free-precession
  • Conductivity
  • Dual-echo-steady-state
  • Magnetic resonance imaging
  • Relaxation

ASJC Scopus subject areas

  • Radiology Nuclear Medicine and imaging

Cite this