Deep chronnectome learning via full bidirectional long short-term memory networks for MCI diagnosis

Weizheng Yan, Han Zhang, Jing Sui, Dinggang Shen

Research output: Chapter in Book/Report/Conference proceedingConference contribution

9 Citations (Scopus)

Abstract

Brain functional connectivity (FC) extracted from resting-state fMRI (RS-fMRI) has become a popular approach for disease diagnosis, where discriminating subjects with mild cognitive impairment (MCI) from normal controls (NC) is still one of the most challenging problems. Dynamic functional connectivity (dFC), consisting of time-varying spatiotemporal dynamics, may characterize “chronnectome” diagnostic information for improving MCI classification. However, most of the current dFC studies are based on detecting discrete major “brain status” via spatial clustering, which ignores rich spatiotemporal dynamics contained in such chronnectome. We propose Deep Chronnectome Learning for exhaustively mining the comprehensive information, especially the hidden higher-level features, i.e., the dFC time series that may add critical diagnostic power for MCI classification. To this end, we devise a new Fully-connected bidirectional Long Short-Term Memory (LSTM) network (Full-BiLSTM) to effectively learn the periodic brain status changes using both past and future information for each brief time segment and then fuse them to form the final output. We have applied our method to a rigorously built large-scale multi-site database (i.e., with 164 data from NCs and 330 from MCIs, which can be further augmented by 25 folds). Our method outperforms other state-of-the-art approaches with an accuracy of 73.6% under solid cross-validations. We also made extensive comparisons among multiple variants of LSTM models. The results suggest high feasibility of our method with promising value also for other brain disorder diagnoses.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2018 - 21st International Conference, 2018, Proceedings
EditorsAlejandro F. Frangi, Christos Davatzikos, Gabor Fichtinger, Carlos Alberola-López, Julia A. Schnabel
PublisherSpringer Verlag
Pages249-257
Number of pages9
ISBN (Print)9783030009304
DOIs
Publication statusPublished - 2018 Jan 1
Externally publishedYes
Event21st International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2018 - Granada, Spain
Duration: 2018 Sep 162018 Sep 20

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11072 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Other

Other21st International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2018
CountrySpain
CityGranada
Period18/9/1618/9/20

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Computer Science(all)

Fingerprint Dive into the research topics of 'Deep chronnectome learning via full bidirectional long short-term memory networks for MCI diagnosis'. Together they form a unique fingerprint.

  • Cite this

    Yan, W., Zhang, H., Sui, J., & Shen, D. (2018). Deep chronnectome learning via full bidirectional long short-term memory networks for MCI diagnosis. In A. F. Frangi, C. Davatzikos, G. Fichtinger, C. Alberola-López, & J. A. Schnabel (Eds.), Medical Image Computing and Computer Assisted Intervention – MICCAI 2018 - 21st International Conference, 2018, Proceedings (pp. 249-257). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 11072 LNCS). Springer Verlag. https://doi.org/10.1007/978-3-030-00931-1_29