Deep ensemble sparse regression network for alzheimer’s disease diagnosis

Research output: Chapter in Book/Report/Conference proceedingConference contribution

12 Citations (Scopus)

Abstract

For neuroimaging-based brain disease diagnosis, sparse regression models have proved their effectiveness in handling highdimensional data but with a small number of samples. In this paper, we propose a novel framework that utilizes sparse regression models as target-level representation learner and builds a deep convolutional neural network for clinical decision making. Specifically, we first train multiple sparse regression models, each of which has different values of a regularization control parameter, and use the outputs of the trained regression models as target-level representations. Note that sparse regression models trained with different values of a regularization control parameter potentially select different sets of features from the original ones, thereby they have different powers to predict the response values, i.e., a clinical label and clinical scores in our work. We then construct a deep convolutional neural network by taking the target-level representations as input. Our deep network learns to optimally fuse the predicted response variables, i.e., target-level representations, from the same sparse response model(s) and also those from the neighboring sparse response models. To our best knowledge, this is the first work that systematically integrates sparse regression models with deep neural network. In our experiments with ADNI cohort, we validated the effectiveness of the proposed method by achieving the highest classification accuracies in three different tasks of Alzheimer’s disease and mild cognitive impairment identification.

Original languageEnglish
Title of host publicationMachine Learning in Medical Imaging - 7th International Workshop, MLMI 2016 held in conjunction with MICCAI 2016, Proceedings
PublisherSpringer Verlag
Pages113-121
Number of pages9
Volume10019 LNCS
ISBN (Print)9783319471563
DOIs
Publication statusPublished - 2016
Event7th International Workshop on Machine Learning in Medical Imaging, MLMI 2016 held in conjunction with 19th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2016 - Athens, Greece
Duration: 2016 Oct 172016 Oct 17

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume10019 LNCS
ISSN (Print)03029743
ISSN (Electronic)16113349

Other

Other7th International Workshop on Machine Learning in Medical Imaging, MLMI 2016 held in conjunction with 19th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2016
CountryGreece
CityAthens
Period16/10/1716/10/17

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Computer Science(all)

Fingerprint Dive into the research topics of 'Deep ensemble sparse regression network for alzheimer’s disease diagnosis'. Together they form a unique fingerprint.

  • Cite this

    Suk, H-I., & Shen, D. (2016). Deep ensemble sparse regression network for alzheimer’s disease diagnosis. In Machine Learning in Medical Imaging - 7th International Workshop, MLMI 2016 held in conjunction with MICCAI 2016, Proceedings (Vol. 10019 LNCS, pp. 113-121). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 10019 LNCS). Springer Verlag. https://doi.org/10.1007/978-3-319-47157-0_14