TY - GEN
T1 - Deep multi-modal latent representation learning for automated dementia diagnosis
AU - Zhou, Tao
AU - Liu, Mingxia
AU - Fu, Huazhu
AU - Wang, Jun
AU - Shen, Jianbing
AU - Shao, Ling
AU - Shen, Dinggang
N1 - Publisher Copyright:
© Springer Nature Switzerland AG 2019.
PY - 2019
Y1 - 2019
N2 - Effective fusion of multi-modality neuroimaging data, such as structural magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography (PET), has attracted increasing interest in computer-aided brain disease diagnosis, by providing complementary structural and functional information of the brain to improve diagnostic performance. Although considerable progress has been made, there remain several significant challenges in traditional methods for fusing multi-modality data. First, the fusion of multi-modality data is usually independent of the training of diagnostic models, leading to sub-optimal performance. Second, it is challenging to effectively exploit the complementary information among multiple modalities based on low-level imaging features (e.g., image intensity or tissue volume). To this end, in this paper, we propose a novel Deep Latent Multi-modality Dementia Diagnosis (DLMD2) framework based on a deep non-negative matrix factorization (NMF) model. Specifically, we integrate the feature fusion/learning process into the classifier construction step for eliminating the gap between neuroimaging features and disease labels. To exploit the correlations among multi-modality data, we learn latent representations for multi-modality data by sharing the common high-level representations in the last layer of each modality in the deep NMF model. Extensive experimental results on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset validate that our proposed method outperforms several state-of-the-art methods.
AB - Effective fusion of multi-modality neuroimaging data, such as structural magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography (PET), has attracted increasing interest in computer-aided brain disease diagnosis, by providing complementary structural and functional information of the brain to improve diagnostic performance. Although considerable progress has been made, there remain several significant challenges in traditional methods for fusing multi-modality data. First, the fusion of multi-modality data is usually independent of the training of diagnostic models, leading to sub-optimal performance. Second, it is challenging to effectively exploit the complementary information among multiple modalities based on low-level imaging features (e.g., image intensity or tissue volume). To this end, in this paper, we propose a novel Deep Latent Multi-modality Dementia Diagnosis (DLMD2) framework based on a deep non-negative matrix factorization (NMF) model. Specifically, we integrate the feature fusion/learning process into the classifier construction step for eliminating the gap between neuroimaging features and disease labels. To exploit the correlations among multi-modality data, we learn latent representations for multi-modality data by sharing the common high-level representations in the last layer of each modality in the deep NMF model. Extensive experimental results on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset validate that our proposed method outperforms several state-of-the-art methods.
UR - http://www.scopus.com/inward/record.url?scp=85075690293&partnerID=8YFLogxK
U2 - 10.1007/978-3-030-32251-9_69
DO - 10.1007/978-3-030-32251-9_69
M3 - Conference contribution
AN - SCOPUS:85075690293
SN - 9783030322502
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 629
EP - 638
BT - Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 - 22nd International Conference, Proceedings
A2 - Shen, Dinggang
A2 - Yap, Pew-Thian
A2 - Liu, Tianming
A2 - Peters, Terry M.
A2 - Khan, Ali
A2 - Staib, Lawrence H.
A2 - Essert, Caroline
A2 - Zhou, Sean
PB - Springer Science and Business Media Deutschland GmbH
T2 - 22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019
Y2 - 13 October 2019 through 17 October 2019
ER -