TY - JOUR
T1 - Deformed minimal models and generalized Toda theory
AU - Park, Q. Han
AU - Shin, H. J.
PY - 1995/3/16
Y1 - 1995/3/16
N2 - We introduce a generalization of Ar-type Toda theory based on a non-Abelian group G, which we call the (Ar, G)-Toda theory, and its affine extensions in terms of gauged Wess-Zumino-Witten actions with deformation terms. In particular, the affine (A1, SU(2))-Toda theory describes the integrable deformation of the minimal conformal theory for the critical Ising model by the operator Φ(2,1). We derive infinite conserved charges and soliton solutions from the Lax pair of the affine (A1, SU(2))-Toda theory. Another type of integrable deformation which accounts for the Φ(3,1)-deformation of the minimal model is also found in the gauged Wess-Zumino-Witten context and its infinite conserved charges are given.
AB - We introduce a generalization of Ar-type Toda theory based on a non-Abelian group G, which we call the (Ar, G)-Toda theory, and its affine extensions in terms of gauged Wess-Zumino-Witten actions with deformation terms. In particular, the affine (A1, SU(2))-Toda theory describes the integrable deformation of the minimal conformal theory for the critical Ising model by the operator Φ(2,1). We derive infinite conserved charges and soliton solutions from the Lax pair of the affine (A1, SU(2))-Toda theory. Another type of integrable deformation which accounts for the Φ(3,1)-deformation of the minimal model is also found in the gauged Wess-Zumino-Witten context and its infinite conserved charges are given.
UR - http://www.scopus.com/inward/record.url?scp=0002923084&partnerID=8YFLogxK
U2 - 10.1016/0370-2693(95)00178-N
DO - 10.1016/0370-2693(95)00178-N
M3 - Article
AN - SCOPUS:0002923084
VL - 347
SP - 73
EP - 79
JO - Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics
JF - Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics
SN - 0370-2693
IS - 1-2
ER -