TY - JOUR
T1 - Degradation of polychlorinated dibenzo-p-dioxins and dibenzofurans in real-field soil by an integrated visible-light photocatalysis and solvent migration system with p-n heterojunction BiVO4/Bi2O3
AU - Lee, Yonghyeon
AU - Cui, Mingcan
AU - Choi, Jongbok
AU - Kim, Jeonggwan
AU - Son, Younggyu
AU - Khim, Jeehyeong
N1 - Funding Information:
Funding: This study was financially supported by the Korean Ministry of Environment Geo-Advanced Innovative Action (GAIA) Project (No. Q1509291 ).
Publisher Copyright:
© 2017 Elsevier B.V.
Copyright:
Copyright 2018 Elsevier B.V., All rights reserved.
PY - 2018/2/15
Y1 - 2018/2/15
N2 - Degradation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in real-field soil was conducted using an integrated photocatalysis-solvent migration system of BiVO4/Bi2O3 and n-hexane. The photocatalyst BiVO4/Bi2O3 was synthesized, and its performance was found to be affected by the BiVO4 content, with 20 wt % BiVO4 showing the best performance owing to its p-n heterojunction being well formed. Migration was affected by the amount of n-hexane, with 15% n-hexane giving the most effective transportation of PCDD/Fs. 37.2% of 17 PCDD/Fs was removed in 60 h by the integrated photocatalysis-solvent migration system, although the reaction zone covered 8.5% of the volume of the soil. The result showed that migration via n-hexane fulfilled the aim of carrying contaminants from inside of the soil to the surface. Electron-scavenging experiments with BiVO4/Bi2O3 showed an 18.4% of performance in removal compared to no-scavenging condition, which showed that the main reactions driving BiVO4/Bi2O3 visible-light photocatalysis for aryl-chloride were found to be reduction-based. Owing to the hindering effect of Cl atoms, degradation by hydroxyl radical could proceed after initial dechlorination. This study establishes the applicability of integrated photocatalysis-solvent migration systems in real-field settings, and is the first report of a visible-light photocatalyst, BiVO4/Bi2O3, for the degradation of PCDD/Fs in soil.
AB - Degradation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in real-field soil was conducted using an integrated photocatalysis-solvent migration system of BiVO4/Bi2O3 and n-hexane. The photocatalyst BiVO4/Bi2O3 was synthesized, and its performance was found to be affected by the BiVO4 content, with 20 wt % BiVO4 showing the best performance owing to its p-n heterojunction being well formed. Migration was affected by the amount of n-hexane, with 15% n-hexane giving the most effective transportation of PCDD/Fs. 37.2% of 17 PCDD/Fs was removed in 60 h by the integrated photocatalysis-solvent migration system, although the reaction zone covered 8.5% of the volume of the soil. The result showed that migration via n-hexane fulfilled the aim of carrying contaminants from inside of the soil to the surface. Electron-scavenging experiments with BiVO4/Bi2O3 showed an 18.4% of performance in removal compared to no-scavenging condition, which showed that the main reactions driving BiVO4/Bi2O3 visible-light photocatalysis for aryl-chloride were found to be reduction-based. Owing to the hindering effect of Cl atoms, degradation by hydroxyl radical could proceed after initial dechlorination. This study establishes the applicability of integrated photocatalysis-solvent migration systems in real-field settings, and is the first report of a visible-light photocatalyst, BiVO4/Bi2O3, for the degradation of PCDD/Fs in soil.
KW - PCDD/F
KW - Real-field soil
KW - Solvent
KW - Visible-light photocatalysis
KW - p-n Heterojunction photocatalyst
UR - http://www.scopus.com/inward/record.url?scp=85042113578&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85042113578&partnerID=8YFLogxK
U2 - 10.1016/j.jhazmat.2017.12.002
DO - 10.1016/j.jhazmat.2017.12.002
M3 - Article
C2 - 30216971
AN - SCOPUS:85042113578
VL - 344
SP - 1116
EP - 1125
JO - Journal of Hazardous Materials
JF - Journal of Hazardous Materials
SN - 0304-3894
ER -