Design of a Broadband Solar Thermal Absorber Using a Deep Neural Network and Experimental Demonstration of Its Performance

Junyong Seo, Pil Hoon Jung, Mingeon Kim, Sounghyeok Yang, Ikjin Lee, Jungchul Lee, Heon Lee, Bong Jae Lee

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

In using nanostructures to design solar thermal absorbers, computational methods, such as rigorous coupled-wave analysis and the finite-difference time-domain method, are often employed to simulate light-structure interactions in the solar spectrum. However, those methods require heavy computational resources and CPU time. In this study, using a state-of-the-art modeling technique, i.e., deep learning, we demonstrate significant reduction of computational costs during the optimization processes. To minimize the number of samples obtained by actual simulation, only regulated amounts are prepared and used as a data set to train the deep neural network (DNN) model. Convergence of the constructed DNN model is carefully examined. Moreover, several analyses utilizing an evolutionary algorithm, which require a remarkable number of performance calculations, are performed using the trained DNN model. We show that deep learning effectively reduces the actual simulation counts compared to the case of a design process without a neural network model. Finally, the proposed solar thermal absorber is fabricated and its absorption performance is characterized.

Original languageEnglish
Article number15028
JournalScientific reports
Volume9
Issue number1
DOIs
Publication statusPublished - 2019 Dec 1

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'Design of a Broadband Solar Thermal Absorber Using a Deep Neural Network and Experimental Demonstration of Its Performance'. Together they form a unique fingerprint.

  • Cite this