Abstract
The rhamnolipid biosurfactant-producing bacterium, strain SDRB-G7, was isolated from the sediment of Sindu-ri beach and identified as Rhodococcus fascians based on a phylogenetic analysis. Optimal activity, with the highest yield (2.441 g/L) and surface tension-reducing activity (24.38 mN/m), was observed when the cells were grown on olive oil as their sole source of carbon at pH 8.0. The rhamnolipid biosurfactant showed environmental stability at a variety of NaCl concentrations (2-20%) and pH values (2-12) even under acidic conditions. Of the initial anthracene, 66% was solubilized by 100% crude biosurfactant. Furthermore, 100% crude biosurfactant desorbed 81% of the anthracene in sediment into the aqueous phase. These results suggest that the rhamnolipid biosurfactant produced from R. fascians SDRB-G7 is a promising candidate for polycyclic aromatic hydrocarbon (PAH) removal from the sediment and can be an effective agent for processes that bioremediate PAHs such as surfactant-enhanced remediation. Practitioner points: Biosurfactants can accelerate desorption of PAHs and improve their solubility. BS-producing R. fascians SDRB-G7 was selected by screening of biochemical tests. Solubility of anthracene was enhanced by rhamnolipid produced by strain SDRB-G7. Microbial surfactant is a promising alternative for bioremediation of PAH-polluted sites.
Original language | English |
---|---|
Pages (from-to) | 739-747 |
Number of pages | 9 |
Journal | Water Environment Research |
Volume | 91 |
Issue number | 8 |
DOIs | |
Publication status | Published - 2019 Aug |
Keywords
- PAHs
- biosurfactant-producing bacteria
- desorption
- marine sediment
- rhamnolipid
- solubilization
ASJC Scopus subject areas
- Environmental Chemistry
- Ecological Modelling
- Water Science and Technology
- Waste Management and Disposal
- Pollution