@article{c80dfcae599941bd961e556720c4382b,
title = "Detection of a particle shower at the Glashow resonance with IceCube",
abstract = "The Glashow resonance describes the resonant formation of a W− boson during the interaction of a high-energy electron antineutrino with an electron1, peaking at an antineutrino energy of 6.3 petaelectronvolts (PeV) in the rest frame of the electron. Whereas this energy scale is out of reach for currently operating and future planned particle accelerators, natural astrophysical phenomena are expected to produce antineutrinos with energies beyond the PeV scale. Here we report the detection by the IceCube neutrino observatory of a cascade of high-energy particles (a particle shower) consistent with being created at the Glashow resonance. A shower with an energy of 6.05 ± 0.72 PeV (determined from Cherenkov radiation in the Antarctic Ice Sheet) was measured. Features consistent with the production of secondary muons in the particle shower indicate the hadronic decay of a resonant W− boson, confirm that the source is astrophysical and provide improved directional localization. The evidence of the Glashow resonance suggests the presence of electron antineutrinos in the astrophysical flux, while also providing further validation of the standard model of particle physics. Its unique signature indicates a method of distinguishing neutrinos from antineutrinos, thus providing a way to identify astronomical accelerators that produce neutrinos via hadronuclear or photohadronic interactions, with or without strong magnetic fields. As such, knowledge of both the flavour (that is, electron, muon or tau neutrinos) and charge (neutrino or antineutrino) will facilitate the advancement of neutrino astronomy.",
author = "{The IceCube Collaboration} and Aartsen, {M. G.} and R. Abbasi and M. Ackermann and J. Adams and Aguilar, {J. A.} and M. Ahlers and M. Ahrens and C. Alispach and Amin, {N. M.} and K. Andeen and T. Anderson and I. Ansseau and G. Anton and C. Arg{\"u}elles and J. Auffenberg and S. Axani and H. Bagherpour and X. Bai and {Balagopal V}, A. and A. Barbano and Barwick, {S. W.} and B. Bastian and V. Basu and V. Baum and S. Baur and R. Bay and Beatty, {J. J.} and Becker, {K. H.} and Tjus, {J. Becker} and C. Bellenghi and S. BenZvi and D. Berley and E. Bernardini and Besson, {D. Z.} and G. Binder and D. Bindig and E. Blaufuss and S. Blot and C. Bohm and S. B{\"o}ser and O. Botner and J. B{\"o}ttcher and E. Bourbeau and J. Bourbeau and F. Bradascio and J. Braun and S. Bron and J. Brostean-Kaiser and A. Burgman and S. Choi",
note = "Funding Information: Acknowledgements We thank T. Pierog, D. Heck and C. Baus for discussions on realistic hadronic shower simulations in ice. We gratefully acknowledge support from the following agencies and institutions: USA—the US National Science Foundation-Office of Polar Programs, the US National Science Foundation Physics Division, the Wisconsin Alumni Research Foundation, the Center for High Throughput Computing (CHTC) at the University of Wisconsin-Madison, the Open Science Grid (OSG), the Extreme Science and Engineering Discovery Environment (XSEDE), the Frontera computing project at the Texas Advanced Computing Center, the US Department of Energy-National Energy Research Scientific Computing Center, the Particle Astrophysics Research Computing Center at the University of Maryland, the Institute for Cyber-Enabled Research at Michigan State University, and the Astroparticle Physics Computational Facility at Marquette University; Belgium—the Funds for Scientific Research (FRS-FNRS and FWO), the FWO Odysseus and Big Science programmes, and the Belgian Federal Science Policy Office (Belspo); Germany—the Bundesministerium f{\"u}r Bildung und Forschung (BMBF), the Deutsche Forschungsgemeinschaft (DFG), the Helmholtz Alliance for Astroparticle Physics (HAP), the Initiative and Networking Fund of the Helmholtz Association, the Deutsches Elektronen Synchrotron (DESY), and the High Performance Computing Cluster of RWTH Aachen; Sweden—the Swedish Research Council, the Swedish Polar Research Secretariat, the Swedish National Infrastructure for Computing (SNIC), and the Knut and Alice Wallenberg Foundation; Australia—the Australian Research Council; Canada—the Natural Sciences and Engineering Research Council of Canada, Calcul Qu{\'e}bec, Compute Ontario, the Canada Foundation for Innovation, WestGrid, and Compute Canada; Denmark—the Villum Fonden, the Danish National Research Foundation (DNRF), the Carlsberg Foundation; New Zealand—the Marsden Fund; Japan—the Japan Society for Promotion of Science (JSPS) and the Institute for Global Prominent Research (IGPR) of Chiba University; Korea—the National Research Foundation of Korea (NRF); Switzerland—the Swiss National Science Foundation (SNSF); the UK—the Department of Physics, University of Oxford. Publisher Copyright: {\textcopyright} 2021, The Author(s), under exclusive licence to Springer Nature Limited.",
year = "2021",
month = mar,
day = "11",
doi = "10.1038/s41586-021-03256-1",
language = "English",
volume = "591",
pages = "220--224",
journal = "Nature Cell Biology",
issn = "1465-7392",
publisher = "Nature Publishing Group",
number = "7849",
}