Determination of current-induced spin-orbit effective magnetic field in GaMnAs ferromagnetic semiconductor

Sangyeop Lee, Seonghoon Choi, Seul Ki Bac, Kyung Jae Lee, Jihoon Chang, Suho Choi, Phunvira Chongthanaphisut, Sanghoon Lee, Xinyu Liu, M. Dobrowolska, Jacek K. Furdyna

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)


We report a method for accurate determination of the strength of the current-induced spin-orbit (SO) field in ferromagnetic GaMnAs films. The SO-field manifests itself in the form of a hysteresis between planar Hall resistances (PHR) measured with positive and negative currents as an applied magnetic field is rotated in the sample plane at constant field strength. The width of the hysteresis, which is related to the strength of the SO-field, is observed to change significantly for different values of the rotating external field strength. Since the SO field occurring at a given current is an intrinsic property of the crystal, such a field dependence of the hysteresis indicates that the width of the hysteresis measured with a single field strength is insufficient for determining the SO field. However, using a model based on magnetic free energy that includes the effects of magnetic anisotropy and the SO-field as developed in the present paper, we show that the SO field for a given current density can be accurately established by fitting to the experimentally observed dependence of transition angles of PHR measured with different applied field strengths. Using the known dependence of magnetic anisotropy of GaMnAs on temperature, we also show that this method applies reliably as the temperature varies.

Original languageEnglish
Article number252401
JournalApplied Physics Letters
Issue number25
Publication statusPublished - 2017 Dec 18

ASJC Scopus subject areas

  • Physics and Astronomy (miscellaneous)


Dive into the research topics of 'Determination of current-induced spin-orbit effective magnetic field in GaMnAs ferromagnetic semiconductor'. Together they form a unique fingerprint.

Cite this