TY - JOUR
T1 - Determining the role of polymer molecular weight for high-performance all-polymer solar cells
T2 - Its effect on polymer aggregation and phase separation
AU - Kang, Hyunbum
AU - Uddin, Mohammad Afsar
AU - Lee, Changyeon
AU - Kim, Ki Hyun
AU - Nguyen, Thanh Luan
AU - Lee, Wonho
AU - Li, Yuxiang
AU - Wang, Cheng
AU - Woo, Han Young
AU - Kim, Bumjoon J.
N1 - Publisher Copyright:
© 2015 American Chemical Society.
PY - 2015/2/18
Y1 - 2015/2/18
N2 - The molecular weight of a conjugated polymer is one of the key factors determining the electrical, morphological, and mechanical properties as well as its solubility in organic solvents and miscibility with other polymers. In this study, a series of semicrystalline poly[(2,5-bis(2-hexyldecyloxy)phenylene)-alt-(5,6-difluoro-4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole)] (PPDT2FBT) polymers with different number-average molecular weights (Mns) (PPDT2FBTL, Mn = 12 kg/mol; PPDT2FBTM, Mn= 24 kg/mol; PPDT2FBTH, Mn= 40 kg/mol) were synthesized, and their photovoltaic properties as electron donors for all-polymer solar cells (all-PSCs) with poly[[N,N-bis(2-octyldodecyl)-napthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5-(2,2-bithiophene)] (P(NDI2OD-T2)) acceptor were studied. The Mn effect of PPDT2FBT on the structural, morphological, electrical, and photovoltaic properties was systematically investigated. In particular, tuning the Mn induced dramatic effects on the aggregation behaviors of the polymers and their bulk heterojunction morphology of all-PSCs, which was thoroughly examined by grazing incident X-ray scattering, resonant soft X-ray scattering, and other microscopy measurements. High Mn PPDT2FBTH promoted a strong "face-on" geometry in the blend film, suppressed the formation of an excessively large crystalline domain, and facilitated molecularly intermixed phases with P(NDI2OD-T2). Therefore, the optimized all-PSCs based on PPDT2FBTH/P(NDI2OD-T2) showed substantially higher hole and electron mobilities than those of PPDT2FBTL/P(NDI2OD-T2), leading to a power conversion efficiency exceeding 5%, which is one of the highest values for all-PSCs reported thus far.
AB - The molecular weight of a conjugated polymer is one of the key factors determining the electrical, morphological, and mechanical properties as well as its solubility in organic solvents and miscibility with other polymers. In this study, a series of semicrystalline poly[(2,5-bis(2-hexyldecyloxy)phenylene)-alt-(5,6-difluoro-4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole)] (PPDT2FBT) polymers with different number-average molecular weights (Mns) (PPDT2FBTL, Mn = 12 kg/mol; PPDT2FBTM, Mn= 24 kg/mol; PPDT2FBTH, Mn= 40 kg/mol) were synthesized, and their photovoltaic properties as electron donors for all-polymer solar cells (all-PSCs) with poly[[N,N-bis(2-octyldodecyl)-napthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5-(2,2-bithiophene)] (P(NDI2OD-T2)) acceptor were studied. The Mn effect of PPDT2FBT on the structural, morphological, electrical, and photovoltaic properties was systematically investigated. In particular, tuning the Mn induced dramatic effects on the aggregation behaviors of the polymers and their bulk heterojunction morphology of all-PSCs, which was thoroughly examined by grazing incident X-ray scattering, resonant soft X-ray scattering, and other microscopy measurements. High Mn PPDT2FBTH promoted a strong "face-on" geometry in the blend film, suppressed the formation of an excessively large crystalline domain, and facilitated molecularly intermixed phases with P(NDI2OD-T2). Therefore, the optimized all-PSCs based on PPDT2FBTH/P(NDI2OD-T2) showed substantially higher hole and electron mobilities than those of PPDT2FBTL/P(NDI2OD-T2), leading to a power conversion efficiency exceeding 5%, which is one of the highest values for all-PSCs reported thus far.
UR - http://www.scopus.com/inward/record.url?scp=84923247206&partnerID=8YFLogxK
U2 - 10.1021/ja5123182
DO - 10.1021/ja5123182
M3 - Article
AN - SCOPUS:84923247206
SN - 0002-7863
VL - 137
SP - 2359
EP - 2365
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 6
ER -