TY - JOUR
T1 - Development of toroidal nanostructures by self-assembly
T2 - Rational designs and applications
AU - Kim, Yongju
AU - Li, Wen
AU - Shin, Suyong
AU - Lee, Myongsoo
PY - 2013/12/17
Y1 - 2013/12/17
N2 - Toroidal nanostructures are symmetrical ring-shaped structures with a central internal pore. Interestingly, in nature, many transmembrane proteins such as β-barrels and α-helical bundles have toroidal shapes. Because of this similarity, toroidal nanostructures can provide a template for the development of transmembrane channels. However, because of the lack of guiding principles for the construction of toroids, researchers have not widely studied the self-assembly of toroidal nanostructures as compared with the work on other supramolecular architectures.In this Account, we describe our recent efforts to construct toroidal nanostructures through the self-assembly of rationally designed building blocks. In one strategy for building these structures, we induce interfacial curvatures within the building blocks. When we laterally graft a bulky hydrophilic segment onto a p-oligophenyl rod or β-sheet peptides, the backbones of the self-assembled structures can bend in response to the steric effect of these large side groups, driving the p-oligophenyl rod or β-sheet peptides to form nanosized toriods. In another strategy, we can build toroids from bent-shaped building blocks by stacking the macrocycles. Aromatic segments with an internal angle of 120 can associate with each other in aqueous solution to form a hexameric macrocycle. Then these macrocycles can stack on top of each other via hydrophobic and π-π interactions and form highly uniform toroidal nanostructures. We provide many examples that illustrate these guiding principles for constructing toroidal nanostructures in aqueous solution.Efforts to create toroidal nanostructures through the self-assembly of elaborately designed molecular modules provide a fundamental approach toward the development of artificial transmembrane channels. Among the various toroids that we developed, a few nanostructures can insert into lipid membranes and allow limited transport in vesicles.
AB - Toroidal nanostructures are symmetrical ring-shaped structures with a central internal pore. Interestingly, in nature, many transmembrane proteins such as β-barrels and α-helical bundles have toroidal shapes. Because of this similarity, toroidal nanostructures can provide a template for the development of transmembrane channels. However, because of the lack of guiding principles for the construction of toroids, researchers have not widely studied the self-assembly of toroidal nanostructures as compared with the work on other supramolecular architectures.In this Account, we describe our recent efforts to construct toroidal nanostructures through the self-assembly of rationally designed building blocks. In one strategy for building these structures, we induce interfacial curvatures within the building blocks. When we laterally graft a bulky hydrophilic segment onto a p-oligophenyl rod or β-sheet peptides, the backbones of the self-assembled structures can bend in response to the steric effect of these large side groups, driving the p-oligophenyl rod or β-sheet peptides to form nanosized toriods. In another strategy, we can build toroids from bent-shaped building blocks by stacking the macrocycles. Aromatic segments with an internal angle of 120 can associate with each other in aqueous solution to form a hexameric macrocycle. Then these macrocycles can stack on top of each other via hydrophobic and π-π interactions and form highly uniform toroidal nanostructures. We provide many examples that illustrate these guiding principles for constructing toroidal nanostructures in aqueous solution.Efforts to create toroidal nanostructures through the self-assembly of elaborately designed molecular modules provide a fundamental approach toward the development of artificial transmembrane channels. Among the various toroids that we developed, a few nanostructures can insert into lipid membranes and allow limited transport in vesicles.
UR - http://www.scopus.com/inward/record.url?scp=84890641525&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84890641525&partnerID=8YFLogxK
U2 - 10.1021/ar400027c
DO - 10.1021/ar400027c
M3 - Article
AN - SCOPUS:84890641525
VL - 46
SP - 2888
EP - 2897
JO - Accounts of Chemical Research
JF - Accounts of Chemical Research
SN - 0001-4842
IS - 12
ER -