Developmental patterns based individualized parcellation of infant cortical surface

Gang Li, Li Wang, Weili Lin, Dinggang Shen

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

The human cerebral cortex develops dynamically during the early postnatal stage, reflecting the underlying rapid changes of cortical microstructures and their connections, which jointly determine the functional principles of cortical regions. Hence, the dynamic cortical developmental patterns are ideal for defining the distinct cortical regions in microstructure and function for neurodevelopmental studies. Moreover, given the remarkable inter-subject variability in terms of cortical structure/function and their developmental patterns, the individualized cortical parcellation based on each infant’s own developmental patterns is critical for precisely localizing personalized distinct cortical regions and also understanding inter-subject variability. To this end, we propose a novel method for individualized parcellation of the infant cortical surface into distinct and meaningful regions based on each individual’s cortical developmental patterns. Specifically, to alleviate the effects of cortical measurement errors and also make the individualized cortical parcellation comparable across subjects, we first create a population-based cortical parcellation to capture the general developmental landscape of the cortex in an infant population. Then, this population-based parcellation is leveraged to guide the individualized parcellation based on each infant’s own cortical developmental patterns in an iterative manner. At each iteration, the individualized parcellation is gradually updated based on (1) the prior information of the population-based parcellation, (2) the individualized parcellation at the previous iteration, and also (3) the developmental patterns of all vertices. Experiments on fifteen healthy infants, each with longitudinal MRI scans acquired at six time points (i.e., 1, 3, 6, 9, 12 and 18 months of age), show that our method generates a reliable and meaningful individualized cortical parcellation based on each infant’s own developmental patterns.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention − MICCAI 2017 - 20th International Conference, Proceedings
PublisherSpringer Verlag
Pages66-74
Number of pages9
Volume10433 LNCS
ISBN (Print)9783319661810
DOIs
Publication statusPublished - 2017 Jan 1
Externally publishedYes
Event20th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2017 - Quebec City, Canada
Duration: 2017 Sep 112017 Sep 13

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume10433 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Other

Other20th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2017
CountryCanada
CityQuebec City
Period17/9/1117/9/13

Fingerprint

Microstructure
Measurement errors
Cortex
Distinct
Experiments
Iteration
Structure-function
Prior Information
Measurement Error
Magnetic Resonance Imaging
Experiment

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Computer Science(all)

Cite this

Li, G., Wang, L., Lin, W., & Shen, D. (2017). Developmental patterns based individualized parcellation of infant cortical surface. In Medical Image Computing and Computer Assisted Intervention − MICCAI 2017 - 20th International Conference, Proceedings (Vol. 10433 LNCS, pp. 66-74). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 10433 LNCS). Springer Verlag. https://doi.org/10.1007/978-3-319-66182-7_8

Developmental patterns based individualized parcellation of infant cortical surface. / Li, Gang; Wang, Li; Lin, Weili; Shen, Dinggang.

Medical Image Computing and Computer Assisted Intervention − MICCAI 2017 - 20th International Conference, Proceedings. Vol. 10433 LNCS Springer Verlag, 2017. p. 66-74 (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 10433 LNCS).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Li, G, Wang, L, Lin, W & Shen, D 2017, Developmental patterns based individualized parcellation of infant cortical surface. in Medical Image Computing and Computer Assisted Intervention − MICCAI 2017 - 20th International Conference, Proceedings. vol. 10433 LNCS, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 10433 LNCS, Springer Verlag, pp. 66-74, 20th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2017, Quebec City, Canada, 17/9/11. https://doi.org/10.1007/978-3-319-66182-7_8
Li G, Wang L, Lin W, Shen D. Developmental patterns based individualized parcellation of infant cortical surface. In Medical Image Computing and Computer Assisted Intervention − MICCAI 2017 - 20th International Conference, Proceedings. Vol. 10433 LNCS. Springer Verlag. 2017. p. 66-74. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)). https://doi.org/10.1007/978-3-319-66182-7_8
Li, Gang ; Wang, Li ; Lin, Weili ; Shen, Dinggang. / Developmental patterns based individualized parcellation of infant cortical surface. Medical Image Computing and Computer Assisted Intervention − MICCAI 2017 - 20th International Conference, Proceedings. Vol. 10433 LNCS Springer Verlag, 2017. pp. 66-74 (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)).
@inproceedings{3fa04883b80f45a1b2c9007214702e38,
title = "Developmental patterns based individualized parcellation of infant cortical surface",
abstract = "The human cerebral cortex develops dynamically during the early postnatal stage, reflecting the underlying rapid changes of cortical microstructures and their connections, which jointly determine the functional principles of cortical regions. Hence, the dynamic cortical developmental patterns are ideal for defining the distinct cortical regions in microstructure and function for neurodevelopmental studies. Moreover, given the remarkable inter-subject variability in terms of cortical structure/function and their developmental patterns, the individualized cortical parcellation based on each infant’s own developmental patterns is critical for precisely localizing personalized distinct cortical regions and also understanding inter-subject variability. To this end, we propose a novel method for individualized parcellation of the infant cortical surface into distinct and meaningful regions based on each individual’s cortical developmental patterns. Specifically, to alleviate the effects of cortical measurement errors and also make the individualized cortical parcellation comparable across subjects, we first create a population-based cortical parcellation to capture the general developmental landscape of the cortex in an infant population. Then, this population-based parcellation is leveraged to guide the individualized parcellation based on each infant’s own cortical developmental patterns in an iterative manner. At each iteration, the individualized parcellation is gradually updated based on (1) the prior information of the population-based parcellation, (2) the individualized parcellation at the previous iteration, and also (3) the developmental patterns of all vertices. Experiments on fifteen healthy infants, each with longitudinal MRI scans acquired at six time points (i.e., 1, 3, 6, 9, 12 and 18 months of age), show that our method generates a reliable and meaningful individualized cortical parcellation based on each infant’s own developmental patterns.",
author = "Gang Li and Li Wang and Weili Lin and Dinggang Shen",
year = "2017",
month = "1",
day = "1",
doi = "10.1007/978-3-319-66182-7_8",
language = "English",
isbn = "9783319661810",
volume = "10433 LNCS",
series = "Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)",
publisher = "Springer Verlag",
pages = "66--74",
booktitle = "Medical Image Computing and Computer Assisted Intervention − MICCAI 2017 - 20th International Conference, Proceedings",

}

TY - GEN

T1 - Developmental patterns based individualized parcellation of infant cortical surface

AU - Li, Gang

AU - Wang, Li

AU - Lin, Weili

AU - Shen, Dinggang

PY - 2017/1/1

Y1 - 2017/1/1

N2 - The human cerebral cortex develops dynamically during the early postnatal stage, reflecting the underlying rapid changes of cortical microstructures and their connections, which jointly determine the functional principles of cortical regions. Hence, the dynamic cortical developmental patterns are ideal for defining the distinct cortical regions in microstructure and function for neurodevelopmental studies. Moreover, given the remarkable inter-subject variability in terms of cortical structure/function and their developmental patterns, the individualized cortical parcellation based on each infant’s own developmental patterns is critical for precisely localizing personalized distinct cortical regions and also understanding inter-subject variability. To this end, we propose a novel method for individualized parcellation of the infant cortical surface into distinct and meaningful regions based on each individual’s cortical developmental patterns. Specifically, to alleviate the effects of cortical measurement errors and also make the individualized cortical parcellation comparable across subjects, we first create a population-based cortical parcellation to capture the general developmental landscape of the cortex in an infant population. Then, this population-based parcellation is leveraged to guide the individualized parcellation based on each infant’s own cortical developmental patterns in an iterative manner. At each iteration, the individualized parcellation is gradually updated based on (1) the prior information of the population-based parcellation, (2) the individualized parcellation at the previous iteration, and also (3) the developmental patterns of all vertices. Experiments on fifteen healthy infants, each with longitudinal MRI scans acquired at six time points (i.e., 1, 3, 6, 9, 12 and 18 months of age), show that our method generates a reliable and meaningful individualized cortical parcellation based on each infant’s own developmental patterns.

AB - The human cerebral cortex develops dynamically during the early postnatal stage, reflecting the underlying rapid changes of cortical microstructures and their connections, which jointly determine the functional principles of cortical regions. Hence, the dynamic cortical developmental patterns are ideal for defining the distinct cortical regions in microstructure and function for neurodevelopmental studies. Moreover, given the remarkable inter-subject variability in terms of cortical structure/function and their developmental patterns, the individualized cortical parcellation based on each infant’s own developmental patterns is critical for precisely localizing personalized distinct cortical regions and also understanding inter-subject variability. To this end, we propose a novel method for individualized parcellation of the infant cortical surface into distinct and meaningful regions based on each individual’s cortical developmental patterns. Specifically, to alleviate the effects of cortical measurement errors and also make the individualized cortical parcellation comparable across subjects, we first create a population-based cortical parcellation to capture the general developmental landscape of the cortex in an infant population. Then, this population-based parcellation is leveraged to guide the individualized parcellation based on each infant’s own cortical developmental patterns in an iterative manner. At each iteration, the individualized parcellation is gradually updated based on (1) the prior information of the population-based parcellation, (2) the individualized parcellation at the previous iteration, and also (3) the developmental patterns of all vertices. Experiments on fifteen healthy infants, each with longitudinal MRI scans acquired at six time points (i.e., 1, 3, 6, 9, 12 and 18 months of age), show that our method generates a reliable and meaningful individualized cortical parcellation based on each infant’s own developmental patterns.

UR - http://www.scopus.com/inward/record.url?scp=85029388305&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85029388305&partnerID=8YFLogxK

U2 - 10.1007/978-3-319-66182-7_8

DO - 10.1007/978-3-319-66182-7_8

M3 - Conference contribution

AN - SCOPUS:85029388305

SN - 9783319661810

VL - 10433 LNCS

T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

SP - 66

EP - 74

BT - Medical Image Computing and Computer Assisted Intervention − MICCAI 2017 - 20th International Conference, Proceedings

PB - Springer Verlag

ER -