TY - JOUR
T1 - Diffusion and perfusion MRI findings of the signal-intensity abnormalities of brain associated with developmental venous anomaly
AU - Jung, H. N.
AU - Kim, Sung Tae
AU - Cha, J.
AU - Kim, H. J.
AU - Byun, H. S.
AU - Jeon, P.
AU - Kim, K. H.
AU - Kim, B. J.
AU - Kim, H. J.
PY - 2014/8
Y1 - 2014/8
N2 - BACKGROUND AND PURPOSE: Developmental venous anomalies are the most common intracranial vascular malformation. Increased signal-intensity on T2-FLAIR images in the areas drained by developmental venous anomalies are encountered occasionally on brain imaging studies. We evaluated diffusion and perfusion MR imaging findings of the abnormally high signal intensity associated with developmental venous anomalies to describe their pathophysiologic nature. MATERIALS AND METHODS: We retrospectively reviewed imaging findings of 34 subjects with signal-intensity abnormalities associated with developmental venous anomalies. All subjects underwent brain MR imaging with contrast and diffusion and perfusion MR imaging. Regions of interest were placed covering abnormally high signal intensity around developmental venous anomalies on fluid-attenuated inversion recovery imaging, and the same ROIs were drawn on the corresponding sections of the diffusion and perfusion MR imaging. We measured the apparent diffusion coefficient, relative cerebral blood volume, relative mean transit time, and time-to-peak of the signal-intensity abnormalities around developmental venous anomalies and compared them with the contralateral normal white matter. The Mann-Whitney U test was used for statistical analysis. RESULTS: The means of ADC, relative cerebral blood volume, relative mean transit time, and TTP of signal-intensity abnormalities around developmental venous anomalies were calculated as follows: 0.98 ± 0.13 10-3mm 2/s, 195.67 ± 102.18 mL/100 g, 16.74 ± 7.38 seconds, and 11.65 ± 7.49 seconds, respectively. The values of normal WM were as follows: 0.74 ± 0.08 10-3mm2/s for ADC, 48.53 ± 22.85 mL/100 g for relative cerebral blood volume, 12.12 ± 4.27 seconds for relative mean transit time, and 8.35 ± 3.89 seconds for TTP. All values of ADC, relative cerebral blood volume, relative mean transit time, and TTP in the signal-intensity abnormalities around developmental venous anomalies were statistically higher than those of normal WM (All P < .001, respectively). CONCLUSIONS: The diffusion and perfusion MR imaging findings of the signal-intensity abnormalities associated with developmental venous anomaly suggest that the nature of the lesion is vasogenic edema with congestion and delayed perfusion.
AB - BACKGROUND AND PURPOSE: Developmental venous anomalies are the most common intracranial vascular malformation. Increased signal-intensity on T2-FLAIR images in the areas drained by developmental venous anomalies are encountered occasionally on brain imaging studies. We evaluated diffusion and perfusion MR imaging findings of the abnormally high signal intensity associated with developmental venous anomalies to describe their pathophysiologic nature. MATERIALS AND METHODS: We retrospectively reviewed imaging findings of 34 subjects with signal-intensity abnormalities associated with developmental venous anomalies. All subjects underwent brain MR imaging with contrast and diffusion and perfusion MR imaging. Regions of interest were placed covering abnormally high signal intensity around developmental venous anomalies on fluid-attenuated inversion recovery imaging, and the same ROIs were drawn on the corresponding sections of the diffusion and perfusion MR imaging. We measured the apparent diffusion coefficient, relative cerebral blood volume, relative mean transit time, and time-to-peak of the signal-intensity abnormalities around developmental venous anomalies and compared them with the contralateral normal white matter. The Mann-Whitney U test was used for statistical analysis. RESULTS: The means of ADC, relative cerebral blood volume, relative mean transit time, and TTP of signal-intensity abnormalities around developmental venous anomalies were calculated as follows: 0.98 ± 0.13 10-3mm 2/s, 195.67 ± 102.18 mL/100 g, 16.74 ± 7.38 seconds, and 11.65 ± 7.49 seconds, respectively. The values of normal WM were as follows: 0.74 ± 0.08 10-3mm2/s for ADC, 48.53 ± 22.85 mL/100 g for relative cerebral blood volume, 12.12 ± 4.27 seconds for relative mean transit time, and 8.35 ± 3.89 seconds for TTP. All values of ADC, relative cerebral blood volume, relative mean transit time, and TTP in the signal-intensity abnormalities around developmental venous anomalies were statistically higher than those of normal WM (All P < .001, respectively). CONCLUSIONS: The diffusion and perfusion MR imaging findings of the signal-intensity abnormalities associated with developmental venous anomaly suggest that the nature of the lesion is vasogenic edema with congestion and delayed perfusion.
UR - http://www.scopus.com/inward/record.url?scp=84907367008&partnerID=8YFLogxK
U2 - 10.3174/ajnr.A3900
DO - 10.3174/ajnr.A3900
M3 - Article
C2 - 24651815
AN - SCOPUS:84907367008
SN - 0195-6108
VL - 35
SP - 1539
EP - 1542
JO - American Journal of Neuroradiology
JF - American Journal of Neuroradiology
IS - 8
ER -