Abstract
IκB kinases (IKKs) are a therapeutic target due to their crucial roles in various biological processes, including the immune response, the stress response, and tumor development. IKKs integrate various upstream signals that activate NF-κB by phosphorylating IκB and also regulate many proteins related to cell growth and metabolism. Although they function as a heteromeric complex comprised of kinase subunits and an adaptor, these kinases produce distinct cellular responses by phosphorylating different target molecules, suggesting that they may also be regulated in a subtype-specific manner. In this study, arfaptin 2 was identified as an IKKβ-specific binding partner. Interestingly, arfaptin 2 also interacted with NEMO. Domain mapping studies revealed that the C-terminal region, including the IKKβ HLH domain and the first coiled-coil NEMO region were respectively required for interactions with the arfaptin 2 N-terminal flexible region. Overexpression of arfaptin 2 inhibited tumor necrosis factor (TNF)-α-stimulated nuclear factor-κB (NF-κB) signaling, whereas downregulation of arfaptin 2 by small interfering RNA enhanced NF-κB activity. Dimerization of arfaptin 2 through the Bin-Amphiphysin-Rvs domain may be essential to inhibit activation of NF-κB through multimodal interactions with IKKβs or IKKβ/NEMO, as ectopic expression of the arfaptin 2 fragment responsible for IKK interactions did not change TNFα-stimulated NF-κB activation. These data indicate that arfaptin 2 is the first molecule to regulate NF-κB signaling by interacting with the functional IKK complex but not by direct inhibiting IKKβ phosphorylation.
Original language | English |
---|---|
Pages (from-to) | 2173-2181 |
Number of pages | 9 |
Journal | Cellular Signalling |
Volume | 27 |
Issue number | 11 |
DOIs | |
Publication status | Published - 2015 Nov 1 |
Keywords
- Arfaptin 2
- BAR domain
- IκB kinases
- NF-κB
- TNF-α
ASJC Scopus subject areas
- Cell Biology