Direct-write n- and p-type graphene channel FETs

Jiyoung Chang, Yumeng Liu, Heo Kwang, Byung Yang Lee, Seung Wuk Lee, Liwei Lin

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Citations (Scopus)

Abstract

This paper presents a maskless, direct-write process to create both n- and p-type graphene channel FETs (Field Effect Transistors) on a single substrate. There are following achievements as compared with previous works: (1) direct deposition of controllable, arbitrary fiber patterns to construct graphene-based transistor, in which near-field electrospinning process is integrated to pattern the polymer fibers; (2) a maskless doping process to make both n-and/or p-type graphene on the same substrate, in which electrospun fibers serve as both the oxygen plasma etching mask and chemical doping sources, simultaneously; and As such, the demonstrated process could open up a new class of graphene-based devices for various applications.

Original languageEnglish
Title of host publicationIEEE 26th International Conference on Micro Electro Mechanical Systems, MEMS 2013
Pages201-204
Number of pages4
DOIs
Publication statusPublished - 2013
EventIEEE 26th International Conference on Micro Electro Mechanical Systems, MEMS 2013 - Taipei, Taiwan, Province of China
Duration: 2013 Jan 202013 Jan 24

Publication series

NameProceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS)
ISSN (Print)1084-6999

Other

OtherIEEE 26th International Conference on Micro Electro Mechanical Systems, MEMS 2013
Country/TerritoryTaiwan, Province of China
CityTaipei
Period13/1/2013/1/24

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Mechanical Engineering
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Direct-write n- and p-type graphene channel FETs'. Together they form a unique fingerprint.

Cite this