Disentangled Intensive Triplet Autoencoder for Infant Functional Connectome Fingerprinting

for UNC/UMN Baby Connectome Project Consortium

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Functional connectome “fingerprint” is a highly characterized brain pattern that distinguishes one individual from others. Although its existence has been demonstrated in adults, an unanswered but fundamental question is whether such individualized pattern emerges since infancy. This problem is barely investigated despites its importance in identifying the origin of the intrinsic connectome patterns that mirror distinct behavioral phenotypes. However, addressing this knowledge gap is challenging because the conventional methods are only applicable to developed brains with subtle longitudinal changes and typically fail on the dramatically developing infant brains. To tackle this challenge, we invent a novel model, namely, disentangled intensive triplet autoencoder (DI-TAE). First, we introduce the triplet autoencoder to embed the original connectivity into a latent space with higher discriminative capability among infant individuals. Then, a disentanglement strategy is proposed to separate the latent variables into identity-code, age-code, and noise-code, which not only restrains the interference from age-related developmental variance, but also captures the identity-related invariance. Next, a cross-reconstruction loss and an intensive triplet loss are designed to guarantee the effectiveness of the disentanglement and enhance the inter-subject dissimilarity for better discrimination. Finally, a variance-guided bootstrap aggregating is developed for DI-TAE to further improve the performance of identification. DI-TAE is validated on three longitudinal resting-state fMRI datasets with 394 infant scans aged 16 to 874 days. Our proposed model outperforms other state-of-the-art methods by increasing the identification rate by more than 50%, and for the first time suggests the plausible existence of brain functional connectome “fingerprint” since early infancy.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2020 - 23rd International Conference, Proceedings
EditorsAnne L. Martel, Purang Abolmaesumi, Danail Stoyanov, Diana Mateus, Maria A. Zuluaga, S. Kevin Zhou, Daniel Racoceanu, Leo Joskowicz
PublisherSpringer Science and Business Media Deutschland GmbH
Pages72-82
Number of pages11
ISBN (Print)9783030597276
DOIs
Publication statusPublished - 2020
Event23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020 - Lima, Peru
Duration: 2020 Oct 42020 Oct 8

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12267 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020
Country/TerritoryPeru
CityLima
Period20/10/420/10/8

Keywords

  • Infant functional connectome
  • Rs-fMRI
  • Triplet autoencoder

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Computer Science(all)

Fingerprint

Dive into the research topics of 'Disentangled Intensive Triplet Autoencoder for Infant Functional Connectome Fingerprinting'. Together they form a unique fingerprint.

Cite this