Do cause and effect need to be temporally continuous? Learning to compensate for delayed vestibular feedback

Douglas W. Cunningham, Bjoern Kreher, Markus von der Heyde, Heinrich Bulthoff

Research output: Contribution to journalArticle

Abstract

Delaying the presentation of information to one modality relative to another (an intersensory temporal offset) impairs performance on a wide range of tasks. We have recently shown, however, that a few minutes exposure to delayed visual feedback induces sensorimotor temporal adaptation, returning performance to normal. Here, we examine whether adaptation to delayed vestibular feedback is possible. Subjects were placed on a motion platform, and were asked to perform a stabilization task. The task was similar to balancing a rod on the tip of your finger. Specifically, the platform acted as if it were on the end of an inverted pendulum, with subjects applying an acceleration to the platform via a joystick. The more difficulty one has in stabilizing the platform the more it will oscillate, increasing the variability in the platform's position. The experiment was divided into 3 sections. During the Baseline section (5 minutes), subjects performed the task with immediate vestibular feedback. They then were presented with a Training section, consisting of 4 sessions (5 minutes each) during which vestibular feedback was delayed by 500 ms. Finally, subjects were presented with a Post-test (two minutes) with no feedback delay. Subjects performed rather well in the Baseline section (average standard deviation of platform tilt was 1.37 degrees). The introduction of the delay greatly impaired performance (8.81 degrees standard deviation in the 1st Training session), but performance rapidly showed significant improvement (5.59 degrees standard deviation during the last training section, p<0.04). Subjects clearly learned to compensate, at least partially, for the delayed vestibular feedback. Performance during the Post-test was worse than during Baseline (2.48 degrees standard deviation in tilt). This decrease suggests that the improvement seen during training might be the result of intersensory temporal adaptation.

Original languageEnglish
JournalJournal of Vision
Volume1
Issue number3
DOIs
Publication statusPublished - 2001 Dec 1
Externally publishedYes

Fingerprint

Learning
Sensory Feedback
Fingers

ASJC Scopus subject areas

  • Ophthalmology

Cite this

Do cause and effect need to be temporally continuous? Learning to compensate for delayed vestibular feedback. / Cunningham, Douglas W.; Kreher, Bjoern; von der Heyde, Markus; Bulthoff, Heinrich.

In: Journal of Vision, Vol. 1, No. 3, 01.12.2001.

Research output: Contribution to journalArticle

@article{b37af885164a4ba09e86bbc7c7a7aeb1,
title = "Do cause and effect need to be temporally continuous? Learning to compensate for delayed vestibular feedback",
abstract = "Delaying the presentation of information to one modality relative to another (an intersensory temporal offset) impairs performance on a wide range of tasks. We have recently shown, however, that a few minutes exposure to delayed visual feedback induces sensorimotor temporal adaptation, returning performance to normal. Here, we examine whether adaptation to delayed vestibular feedback is possible. Subjects were placed on a motion platform, and were asked to perform a stabilization task. The task was similar to balancing a rod on the tip of your finger. Specifically, the platform acted as if it were on the end of an inverted pendulum, with subjects applying an acceleration to the platform via a joystick. The more difficulty one has in stabilizing the platform the more it will oscillate, increasing the variability in the platform's position. The experiment was divided into 3 sections. During the Baseline section (5 minutes), subjects performed the task with immediate vestibular feedback. They then were presented with a Training section, consisting of 4 sessions (5 minutes each) during which vestibular feedback was delayed by 500 ms. Finally, subjects were presented with a Post-test (two minutes) with no feedback delay. Subjects performed rather well in the Baseline section (average standard deviation of platform tilt was 1.37 degrees). The introduction of the delay greatly impaired performance (8.81 degrees standard deviation in the 1st Training session), but performance rapidly showed significant improvement (5.59 degrees standard deviation during the last training section, p<0.04). Subjects clearly learned to compensate, at least partially, for the delayed vestibular feedback. Performance during the Post-test was worse than during Baseline (2.48 degrees standard deviation in tilt). This decrease suggests that the improvement seen during training might be the result of intersensory temporal adaptation.",
author = "Cunningham, {Douglas W.} and Bjoern Kreher and {von der Heyde}, Markus and Heinrich Bulthoff",
year = "2001",
month = "12",
day = "1",
doi = "10.1167/1.3.135",
language = "English",
volume = "1",
journal = "Journal of Vision",
issn = "1534-7362",
publisher = "Association for Research in Vision and Ophthalmology Inc.",
number = "3",

}

TY - JOUR

T1 - Do cause and effect need to be temporally continuous? Learning to compensate for delayed vestibular feedback

AU - Cunningham, Douglas W.

AU - Kreher, Bjoern

AU - von der Heyde, Markus

AU - Bulthoff, Heinrich

PY - 2001/12/1

Y1 - 2001/12/1

N2 - Delaying the presentation of information to one modality relative to another (an intersensory temporal offset) impairs performance on a wide range of tasks. We have recently shown, however, that a few minutes exposure to delayed visual feedback induces sensorimotor temporal adaptation, returning performance to normal. Here, we examine whether adaptation to delayed vestibular feedback is possible. Subjects were placed on a motion platform, and were asked to perform a stabilization task. The task was similar to balancing a rod on the tip of your finger. Specifically, the platform acted as if it were on the end of an inverted pendulum, with subjects applying an acceleration to the platform via a joystick. The more difficulty one has in stabilizing the platform the more it will oscillate, increasing the variability in the platform's position. The experiment was divided into 3 sections. During the Baseline section (5 minutes), subjects performed the task with immediate vestibular feedback. They then were presented with a Training section, consisting of 4 sessions (5 minutes each) during which vestibular feedback was delayed by 500 ms. Finally, subjects were presented with a Post-test (two minutes) with no feedback delay. Subjects performed rather well in the Baseline section (average standard deviation of platform tilt was 1.37 degrees). The introduction of the delay greatly impaired performance (8.81 degrees standard deviation in the 1st Training session), but performance rapidly showed significant improvement (5.59 degrees standard deviation during the last training section, p<0.04). Subjects clearly learned to compensate, at least partially, for the delayed vestibular feedback. Performance during the Post-test was worse than during Baseline (2.48 degrees standard deviation in tilt). This decrease suggests that the improvement seen during training might be the result of intersensory temporal adaptation.

AB - Delaying the presentation of information to one modality relative to another (an intersensory temporal offset) impairs performance on a wide range of tasks. We have recently shown, however, that a few minutes exposure to delayed visual feedback induces sensorimotor temporal adaptation, returning performance to normal. Here, we examine whether adaptation to delayed vestibular feedback is possible. Subjects were placed on a motion platform, and were asked to perform a stabilization task. The task was similar to balancing a rod on the tip of your finger. Specifically, the platform acted as if it were on the end of an inverted pendulum, with subjects applying an acceleration to the platform via a joystick. The more difficulty one has in stabilizing the platform the more it will oscillate, increasing the variability in the platform's position. The experiment was divided into 3 sections. During the Baseline section (5 minutes), subjects performed the task with immediate vestibular feedback. They then were presented with a Training section, consisting of 4 sessions (5 minutes each) during which vestibular feedback was delayed by 500 ms. Finally, subjects were presented with a Post-test (two minutes) with no feedback delay. Subjects performed rather well in the Baseline section (average standard deviation of platform tilt was 1.37 degrees). The introduction of the delay greatly impaired performance (8.81 degrees standard deviation in the 1st Training session), but performance rapidly showed significant improvement (5.59 degrees standard deviation during the last training section, p<0.04). Subjects clearly learned to compensate, at least partially, for the delayed vestibular feedback. Performance during the Post-test was worse than during Baseline (2.48 degrees standard deviation in tilt). This decrease suggests that the improvement seen during training might be the result of intersensory temporal adaptation.

UR - http://www.scopus.com/inward/record.url?scp=4143061602&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=4143061602&partnerID=8YFLogxK

U2 - 10.1167/1.3.135

DO - 10.1167/1.3.135

M3 - Article

AN - SCOPUS:4143061602

VL - 1

JO - Journal of Vision

JF - Journal of Vision

SN - 1534-7362

IS - 3

ER -