DoF analysis of the MIMO broadcast channel with alternating/hybrid CSIT

Borzoo Rassouli, Chenxi Hao, Bruno Clercks

Research output: Contribution to journalArticle

10 Citations (Scopus)


We consider a K-user multiple-input single-output (MISO) broadcast channel (BC) where the channel state information (CSI) of user i(i=1,2, K) may be instantaneously perfect (P), delayed (D), or not known (N) at the transmitter with probabilities λPi P, λD i, and λN i, respectively. In this setting, according to the three possible CSI at the transmitter (CSIT) for each user, knowledge of the joint CSIT of the K users could have at most 3K states. In this paper, given the marginal probabilities of CSIT (i.e., λP i, λD i, and λN i), we derive an outer bound for the degrees of freedom (DoF) region of the K-user MISO BC. Subsequently, we tighten this outer bound by considering a set of inequalities that capture some of the 3K states of the joint CSIT. One of the consequences of this set of inequalities is that for K≥3, it is shown that the DoF region is not completely characterized by the marginal probabilities in contrast to the two-user case. Afterwards, the tightness of these bounds is investigated through the discussion on the achievability. Finally, a two user multiple-input multiple-output BC having CSIT among P and N is considered in which an outer bound for the DoF region is provided, and it is shown that in some scenarios, it is tight.

Original languageEnglish
Article number7378965
Pages (from-to)1312-1325
Number of pages14
JournalIEEE Transactions on Information Theory
Issue number3
Publication statusPublished - 2016 Mar 1


  • alternating/hybrid channel state information at the transmitter (CSIT)
  • Degrees of freedom (DoF)
  • multiple-input multiple-output (MIMO) broadcast channel (BC)

ASJC Scopus subject areas

  • Information Systems
  • Computer Science Applications
  • Library and Information Sciences

Fingerprint Dive into the research topics of 'DoF analysis of the MIMO broadcast channel with alternating/hybrid CSIT'. Together they form a unique fingerprint.

  • Cite this