TY - GEN
T1 - Domain Wall Memory based Digital Signal processors for area and energy-efficiency
AU - Chung, Jinil
AU - Ramclam, Kenneth
AU - Park, Jongsun
AU - Ghosh, Swaroop
N1 - Publisher Copyright:
© 2015 ACM.
PY - 2015/7/24
Y1 - 2015/7/24
N2 - In many Digital Signal Processing (DSP) applications such as Viterbi decoder and Fast Fourier Transform (FFT), Static Random Access Memory (SRAM) based embedded memory consumes significant portion of area and power. These DSP units are dominated by sequential memory access where SRAM-based memory is inefficient in terms of area and power. We propose spintronic Domain Wall Memory (DWM) based embedded memories for DSP building blocks e.g., survivor-path memories in Viterbi decoder and First-In-First-Out (FIFO) register files in FFT processor that exploit the unique serial access mechanism, non-volatility and small footprint of the memory for area and power saving. Simulations using 65nm technology show that the DWM based Viterbi decoder achieves 66.4 % area and 59.6 % power savings over the conventional SRAM-based implementation. For 8K point FFT processor, the DWM based design shows 60.6 % area and 60.3 % power savings.
AB - In many Digital Signal Processing (DSP) applications such as Viterbi decoder and Fast Fourier Transform (FFT), Static Random Access Memory (SRAM) based embedded memory consumes significant portion of area and power. These DSP units are dominated by sequential memory access where SRAM-based memory is inefficient in terms of area and power. We propose spintronic Domain Wall Memory (DWM) based embedded memories for DSP building blocks e.g., survivor-path memories in Viterbi decoder and First-In-First-Out (FIFO) register files in FFT processor that exploit the unique serial access mechanism, non-volatility and small footprint of the memory for area and power saving. Simulations using 65nm technology show that the DWM based Viterbi decoder achieves 66.4 % area and 59.6 % power savings over the conventional SRAM-based implementation. For 8K point FFT processor, the DWM based design shows 60.6 % area and 60.3 % power savings.
KW - Digital Signal Processor
KW - Domain Wall Memory
KW - Embedded Memory
KW - STT-MRAM
UR - http://www.scopus.com/inward/record.url?scp=84944104261&partnerID=8YFLogxK
U2 - 10.1145/2744769.2744825
DO - 10.1145/2744769.2744825
M3 - Conference contribution
AN - SCOPUS:84944104261
T3 - Proceedings - Design Automation Conference
BT - 2015 52nd ACM/EDAC/IEEE Design Automation Conference, DAC 2015
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 52nd ACM/EDAC/IEEE Design Automation Conference, DAC 2015
Y2 - 8 June 2015 through 12 June 2015
ER -