Donor-acceptor alternating π-conjugated polymers containing Di(thiophen-2-yl)pyrene and 2,5-Bis(2-octyldodecyl)pyrrolo[3,4-c]pyrrole-1,4(2H, 5H)-dione for organic thin-film transistors

Da Seul Yang, Kyung Hwan Kim, Min Ju Cho, Jung Il Jin, Dong Hoon Choi

Research output: Contribution to journalArticle

19 Citations (Scopus)

Abstract

New diketopyrrolopyrrole (DPP)-containing conjugated polymers such as poly(2,5-bis(2-octyldodecyl)-3-(5-(pyren-1-yl)thiophen-2-yl)-6-(thiophen-2-yl) pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione) (P(DTDPP-alt-(1,6)PY)) and poly(2,5-bis(2-octyldodecyl)-3-(5-(pyren-2-yl)thiophen-2-yl)-6-(thiophen-2-yl) pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione) (P(DTDPP-alt-(2,7)PY)) were successfully synthesized via Suzuki coupling reactions under Pd(0)-catalyzed conditions. P(DTDPP-alt-(2,7)PY), incorporating 2,5-bis(2-octyldodecyl)-3,6-di(thiophen-2- yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (DTDPP) at the 2,7-position of a pyrene ring showed a lower band-gap energy (E gopt. = 1.65 eV) than the 1,6-substituted analog, P(DTDPP-alt-(1,6)PY) (E gopt = 1.71 eV). The energies of the molecular frontier orbitals of the substituted polymers were successfully tuned by changing the anchoring position of DTDPP from the 1,6- to the 2,7-position of the pyrene ring. An organic thin-film transistor fabricated using the newly synthesized P(DTDPP-alt-(2,7)PY), as a semiconductor material exhibited a maximum mobility of up to 0.23 cm2 V-1 s -1 (Ion/off ∼ 106), which was much larger than that obtained using P(DTDPP-alt-(1,6)PY). This distinction is attributed to morphological differences in the solid state arising from differences between the geometrical configurations of DTDPP and the pyrene ring. In addition, the organic phototransistor devices made of P(DTDPP-alt-(2,7)PY) showed interesting photoinduced enhancement of drain current when irradiating the excitation light whose intensity is very small. Based on the photoinduced effect on I DS, photocontrolled memory could be realized under the variation of gate voltages.

Original languageEnglish
Pages (from-to)1457-1467
Number of pages11
JournalJournal of Polymer Science, Part A: Polymer Chemistry
Volume51
Issue number6
DOIs
Publication statusPublished - 2013 Feb 18

Fingerprint

Pyrroles
Conjugated polymers
Pyrene
Thin film transistors
Phototransistors
Drain current
Molecular orbitals
Polymers
Energy gap
Ions
Semiconductor materials
Data storage equipment
Electric potential
pyrene

Keywords

  • conjugated polymers
  • diketopyrrolopyrrole
  • films
  • mobility
  • morphology
  • organic thin-film transistor
  • phototransistor
  • pyrene
  • semiconductor

ASJC Scopus subject areas

  • Materials Chemistry
  • Polymers and Plastics
  • Organic Chemistry

Cite this

@article{2eaa35048ccd4aa8a5cf27dc4bd1ed68,
title = "Donor-acceptor alternating π-conjugated polymers containing Di(thiophen-2-yl)pyrene and 2,5-Bis(2-octyldodecyl)pyrrolo[3,4-c]pyrrole-1,4(2H, 5H)-dione for organic thin-film transistors",
abstract = "New diketopyrrolopyrrole (DPP)-containing conjugated polymers such as poly(2,5-bis(2-octyldodecyl)-3-(5-(pyren-1-yl)thiophen-2-yl)-6-(thiophen-2-yl) pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione) (P(DTDPP-alt-(1,6)PY)) and poly(2,5-bis(2-octyldodecyl)-3-(5-(pyren-2-yl)thiophen-2-yl)-6-(thiophen-2-yl) pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione) (P(DTDPP-alt-(2,7)PY)) were successfully synthesized via Suzuki coupling reactions under Pd(0)-catalyzed conditions. P(DTDPP-alt-(2,7)PY), incorporating 2,5-bis(2-octyldodecyl)-3,6-di(thiophen-2- yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (DTDPP) at the 2,7-position of a pyrene ring showed a lower band-gap energy (E gopt. = 1.65 eV) than the 1,6-substituted analog, P(DTDPP-alt-(1,6)PY) (E gopt = 1.71 eV). The energies of the molecular frontier orbitals of the substituted polymers were successfully tuned by changing the anchoring position of DTDPP from the 1,6- to the 2,7-position of the pyrene ring. An organic thin-film transistor fabricated using the newly synthesized P(DTDPP-alt-(2,7)PY), as a semiconductor material exhibited a maximum mobility of up to 0.23 cm2 V-1 s -1 (Ion/off ∼ 106), which was much larger than that obtained using P(DTDPP-alt-(1,6)PY). This distinction is attributed to morphological differences in the solid state arising from differences between the geometrical configurations of DTDPP and the pyrene ring. In addition, the organic phototransistor devices made of P(DTDPP-alt-(2,7)PY) showed interesting photoinduced enhancement of drain current when irradiating the excitation light whose intensity is very small. Based on the photoinduced effect on I DS, photocontrolled memory could be realized under the variation of gate voltages.",
keywords = "conjugated polymers, diketopyrrolopyrrole, films, mobility, morphology, organic thin-film transistor, phototransistor, pyrene, semiconductor",
author = "Yang, {Da Seul} and Kim, {Kyung Hwan} and Cho, {Min Ju} and Jin, {Jung Il} and Choi, {Dong Hoon}",
year = "2013",
month = "2",
day = "18",
doi = "10.1002/pola.26518",
language = "English",
volume = "51",
pages = "1457--1467",
journal = "Journal of Polymer Science, Part A: Polymer Chemistry",
issn = "0887-624X",
publisher = "John Wiley and Sons Inc.",
number = "6",

}

TY - JOUR

T1 - Donor-acceptor alternating π-conjugated polymers containing Di(thiophen-2-yl)pyrene and 2,5-Bis(2-octyldodecyl)pyrrolo[3,4-c]pyrrole-1,4(2H, 5H)-dione for organic thin-film transistors

AU - Yang, Da Seul

AU - Kim, Kyung Hwan

AU - Cho, Min Ju

AU - Jin, Jung Il

AU - Choi, Dong Hoon

PY - 2013/2/18

Y1 - 2013/2/18

N2 - New diketopyrrolopyrrole (DPP)-containing conjugated polymers such as poly(2,5-bis(2-octyldodecyl)-3-(5-(pyren-1-yl)thiophen-2-yl)-6-(thiophen-2-yl) pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione) (P(DTDPP-alt-(1,6)PY)) and poly(2,5-bis(2-octyldodecyl)-3-(5-(pyren-2-yl)thiophen-2-yl)-6-(thiophen-2-yl) pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione) (P(DTDPP-alt-(2,7)PY)) were successfully synthesized via Suzuki coupling reactions under Pd(0)-catalyzed conditions. P(DTDPP-alt-(2,7)PY), incorporating 2,5-bis(2-octyldodecyl)-3,6-di(thiophen-2- yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (DTDPP) at the 2,7-position of a pyrene ring showed a lower band-gap energy (E gopt. = 1.65 eV) than the 1,6-substituted analog, P(DTDPP-alt-(1,6)PY) (E gopt = 1.71 eV). The energies of the molecular frontier orbitals of the substituted polymers were successfully tuned by changing the anchoring position of DTDPP from the 1,6- to the 2,7-position of the pyrene ring. An organic thin-film transistor fabricated using the newly synthesized P(DTDPP-alt-(2,7)PY), as a semiconductor material exhibited a maximum mobility of up to 0.23 cm2 V-1 s -1 (Ion/off ∼ 106), which was much larger than that obtained using P(DTDPP-alt-(1,6)PY). This distinction is attributed to morphological differences in the solid state arising from differences between the geometrical configurations of DTDPP and the pyrene ring. In addition, the organic phototransistor devices made of P(DTDPP-alt-(2,7)PY) showed interesting photoinduced enhancement of drain current when irradiating the excitation light whose intensity is very small. Based on the photoinduced effect on I DS, photocontrolled memory could be realized under the variation of gate voltages.

AB - New diketopyrrolopyrrole (DPP)-containing conjugated polymers such as poly(2,5-bis(2-octyldodecyl)-3-(5-(pyren-1-yl)thiophen-2-yl)-6-(thiophen-2-yl) pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione) (P(DTDPP-alt-(1,6)PY)) and poly(2,5-bis(2-octyldodecyl)-3-(5-(pyren-2-yl)thiophen-2-yl)-6-(thiophen-2-yl) pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione) (P(DTDPP-alt-(2,7)PY)) were successfully synthesized via Suzuki coupling reactions under Pd(0)-catalyzed conditions. P(DTDPP-alt-(2,7)PY), incorporating 2,5-bis(2-octyldodecyl)-3,6-di(thiophen-2- yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (DTDPP) at the 2,7-position of a pyrene ring showed a lower band-gap energy (E gopt. = 1.65 eV) than the 1,6-substituted analog, P(DTDPP-alt-(1,6)PY) (E gopt = 1.71 eV). The energies of the molecular frontier orbitals of the substituted polymers were successfully tuned by changing the anchoring position of DTDPP from the 1,6- to the 2,7-position of the pyrene ring. An organic thin-film transistor fabricated using the newly synthesized P(DTDPP-alt-(2,7)PY), as a semiconductor material exhibited a maximum mobility of up to 0.23 cm2 V-1 s -1 (Ion/off ∼ 106), which was much larger than that obtained using P(DTDPP-alt-(1,6)PY). This distinction is attributed to morphological differences in the solid state arising from differences between the geometrical configurations of DTDPP and the pyrene ring. In addition, the organic phototransistor devices made of P(DTDPP-alt-(2,7)PY) showed interesting photoinduced enhancement of drain current when irradiating the excitation light whose intensity is very small. Based on the photoinduced effect on I DS, photocontrolled memory could be realized under the variation of gate voltages.

KW - conjugated polymers

KW - diketopyrrolopyrrole

KW - films

KW - mobility

KW - morphology

KW - organic thin-film transistor

KW - phototransistor

KW - pyrene

KW - semiconductor

UR - http://www.scopus.com/inward/record.url?scp=84873643573&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84873643573&partnerID=8YFLogxK

U2 - 10.1002/pola.26518

DO - 10.1002/pola.26518

M3 - Article

AN - SCOPUS:84873643573

VL - 51

SP - 1457

EP - 1467

JO - Journal of Polymer Science, Part A: Polymer Chemistry

JF - Journal of Polymer Science, Part A: Polymer Chemistry

SN - 0887-624X

IS - 6

ER -