Doubly resonant three-wave-mixing spectroscopy of a chiral coupled-chromophore system in solution: Coherent two-dimensional optical activity spectroscopy

Sangheon Cheon, Hochan Lee, Jun Ho Choi, Minhaeng Cho

Research output: Contribution to journalArticle

10 Citations (Scopus)

Abstract

Theoretical descriptions of doubly resonant two-dimensional (2D) sum-frequency-generation (SFG) and difference-frequency-generation (DFG) spectroscopies of coupled-chromophore systems are presented. Despite that each electronic or vibrational chromophore is achiral, the interaction-induced chirality of a coupled multichromophore system in solution can be measured by using the doubly resonant 2D three-wave-mixing (3WM) spectroscopic method. An electronically coupled dimer, where each monomer is modeled as a simple two-level system, can have nonvanishing SFG (or DFG) properties, e.g., susceptibility in frequency domain or nonlinear response function in time domain, if the induced dipole vector of the dimer is not orthogonal to the vector product of the two monomer electronic transition dipole vectors. In order to demonstrate that these 2D 3WM spectroscopic methods can be used to determine the solution structure of a polypeptide, the authors carried out quantum chemistry calculations for an alanine dipeptide and obtained first- and second-order dipole derivatives associated with the amide I vibrational transitions of the dipeptide. It is shown that the numerically simulated 2D IR-IR SFG spectrum is highly sensitive to the dipeptide secondary structure and provides rich information on the one- and two-exciton states. It is believed that the theoretically proposed doubly resonant 2D 3WM spectroscopy, which can be considered to be an optical activity spectroscopy, will be of use in studying both structural and dynamical aspects of coupled multichromophore systems, such as proteins, nucleic acids, nanoparticle aggregates etc.

Original languageEnglish
Article number054505
JournalJournal of Chemical Physics
Volume126
Issue number5
DOIs
Publication statusPublished - 2007

ASJC Scopus subject areas

  • Physics and Astronomy(all)
  • Physical and Theoretical Chemistry

Fingerprint Dive into the research topics of 'Doubly resonant three-wave-mixing spectroscopy of a chiral coupled-chromophore system in solution: Coherent two-dimensional optical activity spectroscopy'. Together they form a unique fingerprint.

  • Cite this