TY - JOUR
T1 - Draw-a-Deep Pattern
T2 - Drawing Pattern-Based Smartphone User Authentication Based on Temporal Convolutional Neural Network
AU - Kim, Junhong
AU - Kang, Pilsung
N1 - Funding Information:
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2022R1A2C2005455). This work was also supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2021-0-00471, Development of Autonomous Control Technology for Error-Free Information Infrastructure Based on Modeling & Optimization).
Publisher Copyright:
© 2022 by the authors.
PY - 2022/8
Y1 - 2022/8
N2 - Present-day smartphones provide various conveniences, owing to high-end hardware specifications and advanced network technology. Consequently, people rely heavily on smartphones for a myriad of daily-life tasks, such as work scheduling, financial transactions, and social networking, which require a strong and robust user authentication mechanism to protect personal data and privacy. In this study, we propose draw-a-deep-pattern (DDP)—a deep learning-based end-to-end smartphone user authentication method using sequential data obtained from drawing a character or freestyle pattern on the smartphone touchscreen. In our model, a recurrent neural network (RNN) and a temporal convolution neural network (TCN), both of which are specialized in sequential data processing, are employed. The main advantages of the proposed DDP are (1) it is robust to the threats to which current authentication systems are vulnerable, e.g., shoulder surfing attack and smudge attack, and (2) it requires few parameters for training; therefore, the model can be consistently updated in real-time, whenever new training data are available. To verify the performance of the DDP model, we collected data from 40 participants in one of the most unfavorable environments possible, wherein all potential intruders know how the authorized users draw the characters or symbols (shape, direction, stroke, etc.) of the drawing pattern used for authentication. Of the two proposed DDP models, the TCN-based model yielded excellent authentication performance with average values of 0.99%, 1.41%, and 1.23% in terms of AUROC, FAR, and FRR, respectively. Furthermore, this model exhibited improved authentication performance and higher computational efficiency than the RNN-based model in most cases. To contribute to the research/industrial communities, we made our dataset publicly available, thereby allowing anyone studying or developing a behavioral biometric-based user authentication system to use our data without any restrictions.
AB - Present-day smartphones provide various conveniences, owing to high-end hardware specifications and advanced network technology. Consequently, people rely heavily on smartphones for a myriad of daily-life tasks, such as work scheduling, financial transactions, and social networking, which require a strong and robust user authentication mechanism to protect personal data and privacy. In this study, we propose draw-a-deep-pattern (DDP)—a deep learning-based end-to-end smartphone user authentication method using sequential data obtained from drawing a character or freestyle pattern on the smartphone touchscreen. In our model, a recurrent neural network (RNN) and a temporal convolution neural network (TCN), both of which are specialized in sequential data processing, are employed. The main advantages of the proposed DDP are (1) it is robust to the threats to which current authentication systems are vulnerable, e.g., shoulder surfing attack and smudge attack, and (2) it requires few parameters for training; therefore, the model can be consistently updated in real-time, whenever new training data are available. To verify the performance of the DDP model, we collected data from 40 participants in one of the most unfavorable environments possible, wherein all potential intruders know how the authorized users draw the characters or symbols (shape, direction, stroke, etc.) of the drawing pattern used for authentication. Of the two proposed DDP models, the TCN-based model yielded excellent authentication performance with average values of 0.99%, 1.41%, and 1.23% in terms of AUROC, FAR, and FRR, respectively. Furthermore, this model exhibited improved authentication performance and higher computational efficiency than the RNN-based model in most cases. To contribute to the research/industrial communities, we made our dataset publicly available, thereby allowing anyone studying or developing a behavioral biometric-based user authentication system to use our data without any restrictions.
KW - behavioral biometrics
KW - mobile user authentication
KW - recurrent neural network
KW - sequence modeling
KW - temporal convolution neural network
UR - http://www.scopus.com/inward/record.url?scp=85136916477&partnerID=8YFLogxK
U2 - 10.3390/app12157590
DO - 10.3390/app12157590
M3 - Article
AN - SCOPUS:85136916477
VL - 12
JO - Applied Sciences (Switzerland)
JF - Applied Sciences (Switzerland)
SN - 2076-3417
IS - 15
M1 - 7590
ER -