Droplet formation in expanding nuclear matter: A system-size dependent study

W. Reisdorf, F. Rami, B. De Schauenburg, Y. Leifels, J. P. Alard, A. Andronic, V. Barret, Z. Basrak, N. Bastid, M. L. Benabderrahmane, R. Čaplar, P. Crochet, P. Dupieux, M. Dželalija, Z. Fodor, A. Gobbi, Y. Grishkin, O. N. Hartmann, N. Herrmann, K. D. HildenbrandB. Hong, J. Kecskemeti, Y. J. Kim, M. Kirejczyk, P. Koczoń, M. Korolija, R. Kotte, T. Kress, A. Lebedev, X. Lopez, M. Merschmeyer, J. Mösner, W. Neubert, D. Pelte, M. Petrovici, A. Schüttauf, Z. Seres, B. Sikora, K. S. Sim, V. Simion, K. Siwek-Wilczyńska, V. Smolyankin, M. Stockmeier, G. Stoicea, Z. Tymiński, P. Wagner, K. Wiśniewski, D. Wohlfarth, Z. G. Xiao, I. Yushmanov, A. Zhilin

Research output: Contribution to journalArticle

17 Citations (Scopus)

Abstract

Cluster production is investigated in central collisions of Ca+Ca, Ni+Ni, 96Zr+96Zr, 96Ru+96Ru, Xe+CsI and Au+Au reactions at 0.4 AGeV incident energy. We find that the multiplicity of clusters with charge Z≥3 grows quadratically with the system's total charge and is associated with a midrapidity source with increasing transverse velocity fluctuations. When reduced to the same number of available charges, an increase of cluster production by about a factor of 5.5 is observed in the midrapidity region between the lightest system (Ca+Ca) and the heaviest one (Au+Au). The results, as well as simulations using quantum molecular dynamics, suggest a collision process where droplets, i.e., nucleon clusters, are created in an expanding, gradually cooling, nucleon gas. Within this picture, expansion dynamics, collective radial flow and cluster formation are closely linked as a result of the combined action of nucleon-nucleon scatterings and the mean fields.

Original languageEnglish
Pages (from-to)118-126
Number of pages9
JournalPhysics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics
Volume595
Issue number1-4
DOIs
Publication statusPublished - 2004 Aug 12

ASJC Scopus subject areas

  • Nuclear and High Energy Physics

Fingerprint Dive into the research topics of 'Droplet formation in expanding nuclear matter: A system-size dependent study'. Together they form a unique fingerprint.

  • Cite this

    Reisdorf, W., Rami, F., De Schauenburg, B., Leifels, Y., Alard, J. P., Andronic, A., Barret, V., Basrak, Z., Bastid, N., Benabderrahmane, M. L., Čaplar, R., Crochet, P., Dupieux, P., Dželalija, M., Fodor, Z., Gobbi, A., Grishkin, Y., Hartmann, O. N., Herrmann, N., ... Zhilin, A. (2004). Droplet formation in expanding nuclear matter: A system-size dependent study. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 595(1-4), 118-126. https://doi.org/10.1016/j.physletb.2004.05.031