Abstract
We experimentally demonstrate a dual-frequency comb-based transient absorption (DFC-TA) technique, which has a 12 fs time resolution and an ultrafast scan rate. Here, the fast scan rate is achieved by employing asynchronous optical sampling (ASOPS), which utilizes two independent mode-locked lasers with a slightly detuned repetition rates. The ASOPS approach is advantageous because photodegradation damage of optical sample during TA measurements can be minimized by a gated sampling. We show that the vibrational and electronic population relaxations of near-IR dye molecules in solution that occur in the time range from femtoseconds to nanoseconds can be resolved even with a single time scan measurement. The phase coherent nature of our dual-frequency comb lasers is shown to be the key for successful coherent averaging with femtosecond time resolution preserved over many data acquisitions. We anticipate that the present DFC-TA method without using any pump-probe time delay devices could be of use in developing ultrafast TA-based microscopy and time-resolved coherent multidimensional spectroscopy.
Original language | English |
---|---|
Pages (from-to) | 1866-1871 |
Number of pages | 6 |
Journal | Journal of Physical Chemistry Letters |
Volume | 9 |
Issue number | 8 |
DOIs | |
Publication status | Published - 2018 Apr 19 |
ASJC Scopus subject areas
- Materials Science(all)
- Physical and Theoretical Chemistry