TY - JOUR
T1 - Effect of Austenite Stability on Microstructural Evolution and Tensile Properties in Intercritically Annealed Medium-Mn Lightweight Steels
AU - Song, Hyejin
AU - Sohn, Seok S
AU - Kwak, Jai Hyun
AU - Lee, Byeong Joo
AU - Lee, Sunghak
PY - 2016/6/1
Y1 - 2016/6/1
N2 - The microstructural evolution with varying intercritical-annealing temperatures of medium-Mn (α + γ) duplex lightweight steels and its effects on tensile properties were investigated in relation to the stability of austenite. The size and volume fraction of austenite grains increased as the annealing temperature increased from 1123 K to 1173 K (850 °C to 900 °C), which corresponded with the thermodynamic calculation data. When the annealing temperature increased further to 1223 K (950 °C), the size and volume fraction were reduced by the formation of athermal α′-martensite during the cooling because the thermal stability of austenite deteriorated as a result of the decrease in C and Mn contents. In order to obtain the best combination of strength and ductility by a transformation-induced plasticity (TRIP) mechanism, an appropriate mechanical stability of austenite was needed and could be achieved when fine austenite grains (size: 1.4 μm, volume fraction: 0.26) were homogenously distributed in the ferrite matrix, as in the 1123 K (850 °C)—annealed steel. This best combination was attributed to the requirement of sufficient deformation for TRIP and the formation of many deformation bands at ferrite grains in both austenite and ferrite bands. Since this medium-Mn lightweight steel has excellent tensile properties as well as reduced alloying costs and weight savings, it holds promise for new automotive applications.
AB - The microstructural evolution with varying intercritical-annealing temperatures of medium-Mn (α + γ) duplex lightweight steels and its effects on tensile properties were investigated in relation to the stability of austenite. The size and volume fraction of austenite grains increased as the annealing temperature increased from 1123 K to 1173 K (850 °C to 900 °C), which corresponded with the thermodynamic calculation data. When the annealing temperature increased further to 1223 K (950 °C), the size and volume fraction were reduced by the formation of athermal α′-martensite during the cooling because the thermal stability of austenite deteriorated as a result of the decrease in C and Mn contents. In order to obtain the best combination of strength and ductility by a transformation-induced plasticity (TRIP) mechanism, an appropriate mechanical stability of austenite was needed and could be achieved when fine austenite grains (size: 1.4 μm, volume fraction: 0.26) were homogenously distributed in the ferrite matrix, as in the 1123 K (850 °C)—annealed steel. This best combination was attributed to the requirement of sufficient deformation for TRIP and the formation of many deformation bands at ferrite grains in both austenite and ferrite bands. Since this medium-Mn lightweight steel has excellent tensile properties as well as reduced alloying costs and weight savings, it holds promise for new automotive applications.
UR - http://www.scopus.com/inward/record.url?scp=84963762320&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84963762320&partnerID=8YFLogxK
U2 - 10.1007/s11661-016-3433-7
DO - 10.1007/s11661-016-3433-7
M3 - Article
AN - SCOPUS:84963762320
VL - 47
SP - 2674
EP - 2685
JO - Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science
JF - Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science
SN - 1073-5623
IS - 6
ER -