TY - JOUR
T1 - Effect of geometric lattice design on optical/electrical properties of transparent silver grid for organic solar cells
AU - Lim, Ju Won
AU - Lee, Young Tack
AU - Pandey, Rina
AU - Yoo, Tae Hee
AU - Sang, Byoung In
AU - Ju, Byeong Kwon
AU - Hwang, Do Kyung
AU - Choi, Won Kook
N1 - Publisher Copyright:
©2014 Optical Society of America
Copyright:
Copyright 2015 Elsevier B.V., All rights reserved.
PY - 2014
Y1 - 2014
N2 - Silver (Ag) grid transparent electrode is one of the most promising transparent conducting electrodes (TCEs) to replace conventional indium tin oxide (ITO). We systematically investigate an effect of geometric lattice modifications on optical and electrical properties of Ag grid electrode. The reference Ag grid with 5 μm width and 100 μm pitch (duty of 0.05) prepared by conventional photo-lithography and lift-off processes shows the sheet resistance of 13.27 Ω/sq, transmittance of 81.1%, and resultant figure of merit (FOM) of 129.05. Three different modified Ag grid electrodes with stripe added-mesh (SAM), triangle-added mesh (TAM), and diagonal-added mesh (DAM) are suggested to improve optical and electrical properties. Although all three of SAM, TAM, and DAM Ag grid electrodes exhibit the lower transmittance values of about 72 - 77%, they showed much decreased sheet resistance of 6 - 8 Ω/sq. As a result, all of the lattice-modified Ag grid electrodes display significant improvement of FOM and the highest value of 171.14 is obtained from DAM Ag grid, which is comparable to that of conventional ITO electrode (175.46). Also, the feasibility of DAM Ag gird electrode for use in organic solar cell is confirmed by finite difference time domain (FDTD) simulations. Unlike a conventional ITO electrode, DAM Ag grid electrode can induce light scattering and trapping due to the diffuse transmission that compensates for the loss in optical transparency, resulting in comparable light absorption in the photo active layer of poly(3-hexylthiophene) (P3HT): [6,6]-phenyl-C61-butyric acid methyl ester (PC60BM). P3HT:PC60BM based OSCs with the DAM Ag grid electrode were fabricated, which also showed the potential for ITO-free transparent electrode.
AB - Silver (Ag) grid transparent electrode is one of the most promising transparent conducting electrodes (TCEs) to replace conventional indium tin oxide (ITO). We systematically investigate an effect of geometric lattice modifications on optical and electrical properties of Ag grid electrode. The reference Ag grid with 5 μm width and 100 μm pitch (duty of 0.05) prepared by conventional photo-lithography and lift-off processes shows the sheet resistance of 13.27 Ω/sq, transmittance of 81.1%, and resultant figure of merit (FOM) of 129.05. Three different modified Ag grid electrodes with stripe added-mesh (SAM), triangle-added mesh (TAM), and diagonal-added mesh (DAM) are suggested to improve optical and electrical properties. Although all three of SAM, TAM, and DAM Ag grid electrodes exhibit the lower transmittance values of about 72 - 77%, they showed much decreased sheet resistance of 6 - 8 Ω/sq. As a result, all of the lattice-modified Ag grid electrodes display significant improvement of FOM and the highest value of 171.14 is obtained from DAM Ag grid, which is comparable to that of conventional ITO electrode (175.46). Also, the feasibility of DAM Ag gird electrode for use in organic solar cell is confirmed by finite difference time domain (FDTD) simulations. Unlike a conventional ITO electrode, DAM Ag grid electrode can induce light scattering and trapping due to the diffuse transmission that compensates for the loss in optical transparency, resulting in comparable light absorption in the photo active layer of poly(3-hexylthiophene) (P3HT): [6,6]-phenyl-C61-butyric acid methyl ester (PC60BM). P3HT:PC60BM based OSCs with the DAM Ag grid electrode were fabricated, which also showed the potential for ITO-free transparent electrode.
UR - http://www.scopus.com/inward/record.url?scp=84920020353&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84920020353&partnerID=8YFLogxK
U2 - 10.1364/OE.22.026891
DO - 10.1364/OE.22.026891
M3 - Article
AN - SCOPUS:84920020353
VL - 22
SP - 26891
EP - 26899
JO - Optics Express
JF - Optics Express
SN - 1094-4087
IS - 22
ER -