Effect of interfacial adhesion on the mechanical properties of organic/inorganic hybrid nanolaminates

Bongjun Yeom, Suhan Kim, Jinhan Cho, Junhee Hahn, Kookheon Char

Research output: Contribution to journalArticle

10 Citations (Scopus)

Abstract

Two different kinds of organic polyelectrolyte (PE)/inorganic silicate nanolaminates carrying dissimilar interfacial adhesion between the organic and the inorganic layers were prepared using the layer-by-layer self-assembly. To investigate the mechanical behavior of the prepared hybrid films, apparent modulus (E′), hardness (H), and crack length were measured by depth-sensing nanoindentation as well as a microVickers experiment. The fracture toughness of the hybrid films was then calculated based on the measured mechanical values. In the case of forming strong interfacial adhesion between the organic and the inorganic layers (A series), the fracture toughness and the crack resistance of hybrid multilayer films were significantly improved as a result of the redistribution of stress concentration and the dissipation of fracture energy by the plasticity of organic PE layers. On the other hand, samples with relatively low interfacial adhesion between the organic and the inorganic layers (T series) had little effect on the improvement of fracture toughness of the hybrid films.

Original languageEnglish
Pages (from-to)447-468
Number of pages22
JournalJournal of Adhesion
Volume82
Issue number5
DOIs
Publication statusPublished - 2006 May
Externally publishedYes

Keywords

  • Fracture toughness
  • Interfacial adhesion
  • Mechanical property
  • Nacre
  • Nanoindentation
  • Organic/inorganic hybrid nanolaminate

ASJC Scopus subject areas

  • Chemistry(all)
  • Mechanics of Materials
  • Surfaces and Interfaces
  • Surfaces, Coatings and Films
  • Materials Chemistry

Fingerprint Dive into the research topics of 'Effect of interfacial adhesion on the mechanical properties of organic/inorganic hybrid nanolaminates'. Together they form a unique fingerprint.

  • Cite this