Effect of platinum deposits on TiO2 on the anoxic photocatalytic degradation pathways of alkylamines in water: Dealkylation and N-alkylation

Jaesang Lee, Wonyong Choi

Research output: Contribution to journalArticle

83 Citations (Scopus)

Abstract

Most photocatalytic degradation (PCD) reactions of aquatic pollutants require the presence of dissolved oxygen and hence do not occur in anoxic suspensions. We investigated the PCD reactions of alkylamines in anoxic water using TiO2 deposited with Pt nanoparticles. Unlike typical PCD reactions, the absence of dissolved oxygen increases the PCD rates of alkylamines on Pt/TiO2 and generates products that are different from those formed on pure TiO2. In particular, N-alkylated amines (e.g., (CH3)3N produced from (CH3)2NH) as well as dealkylated amines are generated in a deaerated Pt/TiO2 suspension. This anoxic N-alkylation pathway is enabled only in the presence of Pt deposits on TiO2 and is applicable only to neutral alkylamines and not to alkylammonium cations. The Pt surface appears to interact with the lone-pair electron on the N atom and catalyze the anoxic degradation of alkylamines mainly through a radical mechanism. Methyl radicals generated on Pt participate in the N-methylation reaction. The presence of intermediate methyl radicals on the Pt surface was verified by the detection of CH4 and CH3CH3 gases evolved during the PCD of (CH 3)3N in an anoxic Pt/TiO2 suspension, whereas no such products were observed in a pure TiO2 suspension. The anoxic PCD of N-methylethylamine on Pt/TiO2 also produces both N-ethylated and N-methylated amines as byproducts, which indicates that both methyl and ethyl radicals are generated during the anoxic degradation process. From a practical point of view, the present finding that undesirable alkylated amines can be produced on Pt/TiO2 in anoxic conditions indicates that caution is necessary when applying Pt/TiO2 photocatalyst to the treatment of water that contains amines.

Original languageEnglish
Pages (from-to)4026-4033
Number of pages8
JournalEnvironmental Science and Technology
Volume38
Issue number14
DOIs
Publication statusPublished - 2004 Jul 15
Externally publishedYes

Fingerprint

Dealkylation
Alkylation
Platinum
platinum
Amines
Deposits
Suspensions
Degradation
degradation
Water
water
Oxygen
Dissolved oxygen
Water Purification
dissolved oxygen
Nanoparticles
Methylation
Cations
Gases
effect

ASJC Scopus subject areas

  • Environmental Engineering
  • Environmental Science(all)
  • Environmental Chemistry

Cite this

@article{ee9aa8af7f834ea28a43a0f06ef4f079,
title = "Effect of platinum deposits on TiO2 on the anoxic photocatalytic degradation pathways of alkylamines in water: Dealkylation and N-alkylation",
abstract = "Most photocatalytic degradation (PCD) reactions of aquatic pollutants require the presence of dissolved oxygen and hence do not occur in anoxic suspensions. We investigated the PCD reactions of alkylamines in anoxic water using TiO2 deposited with Pt nanoparticles. Unlike typical PCD reactions, the absence of dissolved oxygen increases the PCD rates of alkylamines on Pt/TiO2 and generates products that are different from those formed on pure TiO2. In particular, N-alkylated amines (e.g., (CH3)3N produced from (CH3)2NH) as well as dealkylated amines are generated in a deaerated Pt/TiO2 suspension. This anoxic N-alkylation pathway is enabled only in the presence of Pt deposits on TiO2 and is applicable only to neutral alkylamines and not to alkylammonium cations. The Pt surface appears to interact with the lone-pair electron on the N atom and catalyze the anoxic degradation of alkylamines mainly through a radical mechanism. Methyl radicals generated on Pt participate in the N-methylation reaction. The presence of intermediate methyl radicals on the Pt surface was verified by the detection of CH4 and CH3CH3 gases evolved during the PCD of (CH 3)3N in an anoxic Pt/TiO2 suspension, whereas no such products were observed in a pure TiO2 suspension. The anoxic PCD of N-methylethylamine on Pt/TiO2 also produces both N-ethylated and N-methylated amines as byproducts, which indicates that both methyl and ethyl radicals are generated during the anoxic degradation process. From a practical point of view, the present finding that undesirable alkylated amines can be produced on Pt/TiO2 in anoxic conditions indicates that caution is necessary when applying Pt/TiO2 photocatalyst to the treatment of water that contains amines.",
author = "Jaesang Lee and Wonyong Choi",
year = "2004",
month = "7",
day = "15",
doi = "10.1021/es034954b",
language = "English",
volume = "38",
pages = "4026--4033",
journal = "Environmental Science and Technology",
issn = "0013-936X",
publisher = "American Chemical Society",
number = "14",

}

TY - JOUR

T1 - Effect of platinum deposits on TiO2 on the anoxic photocatalytic degradation pathways of alkylamines in water

T2 - Dealkylation and N-alkylation

AU - Lee, Jaesang

AU - Choi, Wonyong

PY - 2004/7/15

Y1 - 2004/7/15

N2 - Most photocatalytic degradation (PCD) reactions of aquatic pollutants require the presence of dissolved oxygen and hence do not occur in anoxic suspensions. We investigated the PCD reactions of alkylamines in anoxic water using TiO2 deposited with Pt nanoparticles. Unlike typical PCD reactions, the absence of dissolved oxygen increases the PCD rates of alkylamines on Pt/TiO2 and generates products that are different from those formed on pure TiO2. In particular, N-alkylated amines (e.g., (CH3)3N produced from (CH3)2NH) as well as dealkylated amines are generated in a deaerated Pt/TiO2 suspension. This anoxic N-alkylation pathway is enabled only in the presence of Pt deposits on TiO2 and is applicable only to neutral alkylamines and not to alkylammonium cations. The Pt surface appears to interact with the lone-pair electron on the N atom and catalyze the anoxic degradation of alkylamines mainly through a radical mechanism. Methyl radicals generated on Pt participate in the N-methylation reaction. The presence of intermediate methyl radicals on the Pt surface was verified by the detection of CH4 and CH3CH3 gases evolved during the PCD of (CH 3)3N in an anoxic Pt/TiO2 suspension, whereas no such products were observed in a pure TiO2 suspension. The anoxic PCD of N-methylethylamine on Pt/TiO2 also produces both N-ethylated and N-methylated amines as byproducts, which indicates that both methyl and ethyl radicals are generated during the anoxic degradation process. From a practical point of view, the present finding that undesirable alkylated amines can be produced on Pt/TiO2 in anoxic conditions indicates that caution is necessary when applying Pt/TiO2 photocatalyst to the treatment of water that contains amines.

AB - Most photocatalytic degradation (PCD) reactions of aquatic pollutants require the presence of dissolved oxygen and hence do not occur in anoxic suspensions. We investigated the PCD reactions of alkylamines in anoxic water using TiO2 deposited with Pt nanoparticles. Unlike typical PCD reactions, the absence of dissolved oxygen increases the PCD rates of alkylamines on Pt/TiO2 and generates products that are different from those formed on pure TiO2. In particular, N-alkylated amines (e.g., (CH3)3N produced from (CH3)2NH) as well as dealkylated amines are generated in a deaerated Pt/TiO2 suspension. This anoxic N-alkylation pathway is enabled only in the presence of Pt deposits on TiO2 and is applicable only to neutral alkylamines and not to alkylammonium cations. The Pt surface appears to interact with the lone-pair electron on the N atom and catalyze the anoxic degradation of alkylamines mainly through a radical mechanism. Methyl radicals generated on Pt participate in the N-methylation reaction. The presence of intermediate methyl radicals on the Pt surface was verified by the detection of CH4 and CH3CH3 gases evolved during the PCD of (CH 3)3N in an anoxic Pt/TiO2 suspension, whereas no such products were observed in a pure TiO2 suspension. The anoxic PCD of N-methylethylamine on Pt/TiO2 also produces both N-ethylated and N-methylated amines as byproducts, which indicates that both methyl and ethyl radicals are generated during the anoxic degradation process. From a practical point of view, the present finding that undesirable alkylated amines can be produced on Pt/TiO2 in anoxic conditions indicates that caution is necessary when applying Pt/TiO2 photocatalyst to the treatment of water that contains amines.

UR - http://www.scopus.com/inward/record.url?scp=3242708420&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=3242708420&partnerID=8YFLogxK

U2 - 10.1021/es034954b

DO - 10.1021/es034954b

M3 - Article

C2 - 15298215

AN - SCOPUS:3242708420

VL - 38

SP - 4026

EP - 4033

JO - Environmental Science and Technology

JF - Environmental Science and Technology

SN - 0013-936X

IS - 14

ER -