Effect of Poloxamer 407 as a carrier vehicle on rotator cuff healing in a rat model

Soung Yon Kim, Soo Won Chae, Juneyoung Lee

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

Background: In vivo studies showing the effects of biologic healing-promoting factors on tendon-to-bone healing after rotator cuff repair have focused only on biologic healing-promoting factors and have not taken into consideration the effect of the carrier vehicle. Moreover, most studies have evaluated the healing process using different carrier vehicles, each of which may have specific effects on tendon healing. This may explain the large variability seen in outcomes in research studies. In this study, we investigated the effects of Poloxamer 407 as a carrier vehicle on rotator cuff healing at the repair site and compared it with those of a collagen sponge, which is a commonly used carrier vehicle.Methods: Fifty-seven adult male Sprague-Dawley rats underwent detachment and immediate repair of the bilateral supraspinatus tendons. Rats were randomly assigned to three groups: repair only, repair with collagen sponge, and repair with Poloxamer 407. The repairs were evaluated at 1, 2, 4, and 8 weeks after surgery with histological analysis and biomechanical testing.Results: At 4 weeks, more cellular organization, a greater number of collagen fibers, and increased maturity of collagen fibers were observed in the repair with Poloxamer 407 group than in the other groups. The repair with collagen sponge group had delayed development and collagen fiber maturation. Significant differences in the biomechanical properties were found between groups at 4 weeks. Stiffness in the case of the repair with Poloxamer 407 group was significantly higher than that in the repair with collagen sponge group. The modulus was significantly lower in the repair with collagen sponge group than in the repair only group. However, the use of Poloxamer 407 versus the collagen sponge did not significantly affect the biomechanical properties of the repaired tendons at 8 weeks.Conclusions: Carrier vehicles may have differing effects at the early stages of rotator cuff healing. The use of Poloxamer 407 as a carrier vehicle may be useful for promoting the early stages of healing and for maintaining the initial biomechanical properties of the repaired rotator cuff tendon.

Original languageEnglish
Article number12
JournalJournal of Orthopaedic Surgery and Research
Volume9
Issue number1
DOIs
Publication statusPublished - 2014 Mar 1

Fingerprint

Poloxamer
Rotator Cuff
Collagen
Porifera
Tendons
Sprague Dawley Rats
Outcome Assessment (Health Care)
Bone and Bones

Keywords

  • Biomechanical testing
  • Carrier vehicle
  • Healing
  • Histological analysis
  • Rotator cuff

ASJC Scopus subject areas

  • Surgery
  • Orthopedics and Sports Medicine

Cite this

Effect of Poloxamer 407 as a carrier vehicle on rotator cuff healing in a rat model. / Kim, Soung Yon; Chae, Soo Won; Lee, Juneyoung.

In: Journal of Orthopaedic Surgery and Research, Vol. 9, No. 1, 12, 01.03.2014.

Research output: Contribution to journalArticle

@article{42c3b150ddb24073b149d0aacb38c045,
title = "Effect of Poloxamer 407 as a carrier vehicle on rotator cuff healing in a rat model",
abstract = "Background: In vivo studies showing the effects of biologic healing-promoting factors on tendon-to-bone healing after rotator cuff repair have focused only on biologic healing-promoting factors and have not taken into consideration the effect of the carrier vehicle. Moreover, most studies have evaluated the healing process using different carrier vehicles, each of which may have specific effects on tendon healing. This may explain the large variability seen in outcomes in research studies. In this study, we investigated the effects of Poloxamer 407 as a carrier vehicle on rotator cuff healing at the repair site and compared it with those of a collagen sponge, which is a commonly used carrier vehicle.Methods: Fifty-seven adult male Sprague-Dawley rats underwent detachment and immediate repair of the bilateral supraspinatus tendons. Rats were randomly assigned to three groups: repair only, repair with collagen sponge, and repair with Poloxamer 407. The repairs were evaluated at 1, 2, 4, and 8 weeks after surgery with histological analysis and biomechanical testing.Results: At 4 weeks, more cellular organization, a greater number of collagen fibers, and increased maturity of collagen fibers were observed in the repair with Poloxamer 407 group than in the other groups. The repair with collagen sponge group had delayed development and collagen fiber maturation. Significant differences in the biomechanical properties were found between groups at 4 weeks. Stiffness in the case of the repair with Poloxamer 407 group was significantly higher than that in the repair with collagen sponge group. The modulus was significantly lower in the repair with collagen sponge group than in the repair only group. However, the use of Poloxamer 407 versus the collagen sponge did not significantly affect the biomechanical properties of the repaired tendons at 8 weeks.Conclusions: Carrier vehicles may have differing effects at the early stages of rotator cuff healing. The use of Poloxamer 407 as a carrier vehicle may be useful for promoting the early stages of healing and for maintaining the initial biomechanical properties of the repaired rotator cuff tendon.",
keywords = "Biomechanical testing, Carrier vehicle, Healing, Histological analysis, Rotator cuff",
author = "Kim, {Soung Yon} and Chae, {Soo Won} and Juneyoung Lee",
year = "2014",
month = "3",
day = "1",
doi = "10.1186/1749-799X-9-12",
language = "English",
volume = "9",
journal = "Journal of Orthopaedic Surgery and Research",
issn = "1749-799X",
publisher = "BioMed Central",
number = "1",

}

TY - JOUR

T1 - Effect of Poloxamer 407 as a carrier vehicle on rotator cuff healing in a rat model

AU - Kim, Soung Yon

AU - Chae, Soo Won

AU - Lee, Juneyoung

PY - 2014/3/1

Y1 - 2014/3/1

N2 - Background: In vivo studies showing the effects of biologic healing-promoting factors on tendon-to-bone healing after rotator cuff repair have focused only on biologic healing-promoting factors and have not taken into consideration the effect of the carrier vehicle. Moreover, most studies have evaluated the healing process using different carrier vehicles, each of which may have specific effects on tendon healing. This may explain the large variability seen in outcomes in research studies. In this study, we investigated the effects of Poloxamer 407 as a carrier vehicle on rotator cuff healing at the repair site and compared it with those of a collagen sponge, which is a commonly used carrier vehicle.Methods: Fifty-seven adult male Sprague-Dawley rats underwent detachment and immediate repair of the bilateral supraspinatus tendons. Rats were randomly assigned to three groups: repair only, repair with collagen sponge, and repair with Poloxamer 407. The repairs were evaluated at 1, 2, 4, and 8 weeks after surgery with histological analysis and biomechanical testing.Results: At 4 weeks, more cellular organization, a greater number of collagen fibers, and increased maturity of collagen fibers were observed in the repair with Poloxamer 407 group than in the other groups. The repair with collagen sponge group had delayed development and collagen fiber maturation. Significant differences in the biomechanical properties were found between groups at 4 weeks. Stiffness in the case of the repair with Poloxamer 407 group was significantly higher than that in the repair with collagen sponge group. The modulus was significantly lower in the repair with collagen sponge group than in the repair only group. However, the use of Poloxamer 407 versus the collagen sponge did not significantly affect the biomechanical properties of the repaired tendons at 8 weeks.Conclusions: Carrier vehicles may have differing effects at the early stages of rotator cuff healing. The use of Poloxamer 407 as a carrier vehicle may be useful for promoting the early stages of healing and for maintaining the initial biomechanical properties of the repaired rotator cuff tendon.

AB - Background: In vivo studies showing the effects of biologic healing-promoting factors on tendon-to-bone healing after rotator cuff repair have focused only on biologic healing-promoting factors and have not taken into consideration the effect of the carrier vehicle. Moreover, most studies have evaluated the healing process using different carrier vehicles, each of which may have specific effects on tendon healing. This may explain the large variability seen in outcomes in research studies. In this study, we investigated the effects of Poloxamer 407 as a carrier vehicle on rotator cuff healing at the repair site and compared it with those of a collagen sponge, which is a commonly used carrier vehicle.Methods: Fifty-seven adult male Sprague-Dawley rats underwent detachment and immediate repair of the bilateral supraspinatus tendons. Rats were randomly assigned to three groups: repair only, repair with collagen sponge, and repair with Poloxamer 407. The repairs were evaluated at 1, 2, 4, and 8 weeks after surgery with histological analysis and biomechanical testing.Results: At 4 weeks, more cellular organization, a greater number of collagen fibers, and increased maturity of collagen fibers were observed in the repair with Poloxamer 407 group than in the other groups. The repair with collagen sponge group had delayed development and collagen fiber maturation. Significant differences in the biomechanical properties were found between groups at 4 weeks. Stiffness in the case of the repair with Poloxamer 407 group was significantly higher than that in the repair with collagen sponge group. The modulus was significantly lower in the repair with collagen sponge group than in the repair only group. However, the use of Poloxamer 407 versus the collagen sponge did not significantly affect the biomechanical properties of the repaired tendons at 8 weeks.Conclusions: Carrier vehicles may have differing effects at the early stages of rotator cuff healing. The use of Poloxamer 407 as a carrier vehicle may be useful for promoting the early stages of healing and for maintaining the initial biomechanical properties of the repaired rotator cuff tendon.

KW - Biomechanical testing

KW - Carrier vehicle

KW - Healing

KW - Histological analysis

KW - Rotator cuff

UR - http://www.scopus.com/inward/record.url?scp=84897589930&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84897589930&partnerID=8YFLogxK

U2 - 10.1186/1749-799X-9-12

DO - 10.1186/1749-799X-9-12

M3 - Article

VL - 9

JO - Journal of Orthopaedic Surgery and Research

JF - Journal of Orthopaedic Surgery and Research

SN - 1749-799X

IS - 1

M1 - 12

ER -