Effect of spin diffusion on current generated by spin motive force

Kyoung Whan Kim, Jung Hwan Moon, Kyoung Jin Lee, Hyun Woo Lee

Research output: Contribution to journalArticle

10 Citations (Scopus)

Abstract

Spin motive force is a spin-dependent force on conduction electrons induced by magnetization dynamics. To examine its effects on magnetization dynamics, it is indispensable to take into account spin accumulation, spin diffusion, and spin-flip scattering since the spin motive force is, in general, nonuniform. We examine the effects of all these on the way the spin motive force generates the charge and spin currents in conventional situations, where the conduction electron spin relaxation dynamics is much faster than the magnetization dynamics. When the spin-dependent electric field is spatially localized, which is common in experimental situations, we find that the conservative part of the spin motive force is unable to generate the charge current due to the cancellation effect by the diffusion current. We also find that the spin current is a nonlocal function of the spin motive force and can be effectively expressed in terms of nonlocal Gilbert damping tensor. It turns out that any spin-independent potential such as Coulomb potential does not affect our principal results. At the last part of this paper, we apply our theory to current-induced domain wall motion.

Original languageEnglish
Article number054462
JournalPhysical Review B - Condensed Matter and Materials Physics
Volume84
Issue number5
DOIs
Publication statusPublished - 2011 Aug 17

    Fingerprint

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Electronic, Optical and Magnetic Materials

Cite this