Effect of the amine group content on catalytic activity and stability of mesoporous silica supported Pd catalysts for additive-free formic acid dehydrogenation at room temperature

Min Ho Jin, Ju Hyoung Park, Duckkyu Oh, Jong Soo Park, Kwan Young Lee, Dong Wook Lee

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

A strong metal-support interaction (SMSI) between amine-functionalized silica supports and Pd nanoparticles is one of important factors to determine the catalytic activity of additive-free formic acid dehydrogenation at room temperature over Pd/NH2-silica catalysts. However, there are few reports on the effect of the content of amine functional groups on the SMSI and catalytic performance for formic acid dehydrogenation. In this study, we tried to maximize the content of amino-propyl groups on the surface of mesoporous silica supports (KIE-6) via hydroxylation of KIE-6 surface before amine functionalization and investigated the effect of the content of amine functional groups on the catalytic activity and stability for formic acid dehydrogenation. As a result, Pd/NH2-hydroxylated KIE-6 (Pd/NH2-OH-KIE-6) catalysts with more amine functional groups provided higher initial catalytic activity (595 mol H2 mol catalyst−1h−1) than Pd/NH2-KIE-6 catalysts. However, Pd/NH2-KIE-6 catalysts showed higher catalytic stability in comparison with Pd/NH2-OH-KIE-6 catalysts. After various characterizations of catalysts, it was demonstrated that the enhanced initial catalytic activity of Pd/NH2-OH-KIE-6 catalysts is attributed to the higher ratio of Pd/PdO derived from the increased content of amine groups of NH2-OH-KIE-6 supports. In contrast, the low surface area of NH2-OH-KIE-6 promoted the aggregation of Pd nanoparticles on Pd/NH2-OH-KIE-6 catalysts, which resulted in the lower catalytic stability of Pd/NH2-OH-KIE-6 catalysts than Pd/NH2-KIE-6 catalysts. Thus it was concluded that confinement of Pd nanoparticles to the pores of supports is a more dominant factor to achieve higher catalytic stability, while the initial catalytic activity is affected by the electronic state of Pd nanoparticle determined by the content of amine functional groups on the surface of supports.

Original languageEnglish
JournalInternational Journal of Hydrogen Energy
DOIs
Publication statusAccepted/In press - 2019 Jan 1

Fingerprint

Formic acid
formic acid
Dehydrogenation
dehydrogenation
Catalyst supports
catalytic activity
Amines
Catalyst activity
amines
Silica
silicon dioxide
catalysts
Catalysts
room temperature
Functional groups
Temperature
Nanoparticles
nanoparticles
Hydroxylation
Electronic states

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment
  • Fuel Technology
  • Condensed Matter Physics
  • Energy Engineering and Power Technology

Cite this

@article{835b4dc8d69942e4895ede070a76f1cf,
title = "Effect of the amine group content on catalytic activity and stability of mesoporous silica supported Pd catalysts for additive-free formic acid dehydrogenation at room temperature",
abstract = "A strong metal-support interaction (SMSI) between amine-functionalized silica supports and Pd nanoparticles is one of important factors to determine the catalytic activity of additive-free formic acid dehydrogenation at room temperature over Pd/NH2-silica catalysts. However, there are few reports on the effect of the content of amine functional groups on the SMSI and catalytic performance for formic acid dehydrogenation. In this study, we tried to maximize the content of amino-propyl groups on the surface of mesoporous silica supports (KIE-6) via hydroxylation of KIE-6 surface before amine functionalization and investigated the effect of the content of amine functional groups on the catalytic activity and stability for formic acid dehydrogenation. As a result, Pd/NH2-hydroxylated KIE-6 (Pd/NH2-OH-KIE-6) catalysts with more amine functional groups provided higher initial catalytic activity (595 mol H2 mol catalyst−1h−1) than Pd/NH2-KIE-6 catalysts. However, Pd/NH2-KIE-6 catalysts showed higher catalytic stability in comparison with Pd/NH2-OH-KIE-6 catalysts. After various characterizations of catalysts, it was demonstrated that the enhanced initial catalytic activity of Pd/NH2-OH-KIE-6 catalysts is attributed to the higher ratio of Pd/PdO derived from the increased content of amine groups of NH2-OH-KIE-6 supports. In contrast, the low surface area of NH2-OH-KIE-6 promoted the aggregation of Pd nanoparticles on Pd/NH2-OH-KIE-6 catalysts, which resulted in the lower catalytic stability of Pd/NH2-OH-KIE-6 catalysts than Pd/NH2-KIE-6 catalysts. Thus it was concluded that confinement of Pd nanoparticles to the pores of supports is a more dominant factor to achieve higher catalytic stability, while the initial catalytic activity is affected by the electronic state of Pd nanoparticle determined by the content of amine functional groups on the surface of supports.",
author = "Jin, {Min Ho} and Park, {Ju Hyoung} and Duckkyu Oh and Park, {Jong Soo} and Lee, {Kwan Young} and Lee, {Dong Wook}",
year = "2019",
month = "1",
day = "1",
doi = "10.1016/j.ijhydene.2018.12.208",
language = "English",
journal = "International Journal of Hydrogen Energy",
issn = "0360-3199",
publisher = "Elsevier Limited",

}

TY - JOUR

T1 - Effect of the amine group content on catalytic activity and stability of mesoporous silica supported Pd catalysts for additive-free formic acid dehydrogenation at room temperature

AU - Jin, Min Ho

AU - Park, Ju Hyoung

AU - Oh, Duckkyu

AU - Park, Jong Soo

AU - Lee, Kwan Young

AU - Lee, Dong Wook

PY - 2019/1/1

Y1 - 2019/1/1

N2 - A strong metal-support interaction (SMSI) between amine-functionalized silica supports and Pd nanoparticles is one of important factors to determine the catalytic activity of additive-free formic acid dehydrogenation at room temperature over Pd/NH2-silica catalysts. However, there are few reports on the effect of the content of amine functional groups on the SMSI and catalytic performance for formic acid dehydrogenation. In this study, we tried to maximize the content of amino-propyl groups on the surface of mesoporous silica supports (KIE-6) via hydroxylation of KIE-6 surface before amine functionalization and investigated the effect of the content of amine functional groups on the catalytic activity and stability for formic acid dehydrogenation. As a result, Pd/NH2-hydroxylated KIE-6 (Pd/NH2-OH-KIE-6) catalysts with more amine functional groups provided higher initial catalytic activity (595 mol H2 mol catalyst−1h−1) than Pd/NH2-KIE-6 catalysts. However, Pd/NH2-KIE-6 catalysts showed higher catalytic stability in comparison with Pd/NH2-OH-KIE-6 catalysts. After various characterizations of catalysts, it was demonstrated that the enhanced initial catalytic activity of Pd/NH2-OH-KIE-6 catalysts is attributed to the higher ratio of Pd/PdO derived from the increased content of amine groups of NH2-OH-KIE-6 supports. In contrast, the low surface area of NH2-OH-KIE-6 promoted the aggregation of Pd nanoparticles on Pd/NH2-OH-KIE-6 catalysts, which resulted in the lower catalytic stability of Pd/NH2-OH-KIE-6 catalysts than Pd/NH2-KIE-6 catalysts. Thus it was concluded that confinement of Pd nanoparticles to the pores of supports is a more dominant factor to achieve higher catalytic stability, while the initial catalytic activity is affected by the electronic state of Pd nanoparticle determined by the content of amine functional groups on the surface of supports.

AB - A strong metal-support interaction (SMSI) between amine-functionalized silica supports and Pd nanoparticles is one of important factors to determine the catalytic activity of additive-free formic acid dehydrogenation at room temperature over Pd/NH2-silica catalysts. However, there are few reports on the effect of the content of amine functional groups on the SMSI and catalytic performance for formic acid dehydrogenation. In this study, we tried to maximize the content of amino-propyl groups on the surface of mesoporous silica supports (KIE-6) via hydroxylation of KIE-6 surface before amine functionalization and investigated the effect of the content of amine functional groups on the catalytic activity and stability for formic acid dehydrogenation. As a result, Pd/NH2-hydroxylated KIE-6 (Pd/NH2-OH-KIE-6) catalysts with more amine functional groups provided higher initial catalytic activity (595 mol H2 mol catalyst−1h−1) than Pd/NH2-KIE-6 catalysts. However, Pd/NH2-KIE-6 catalysts showed higher catalytic stability in comparison with Pd/NH2-OH-KIE-6 catalysts. After various characterizations of catalysts, it was demonstrated that the enhanced initial catalytic activity of Pd/NH2-OH-KIE-6 catalysts is attributed to the higher ratio of Pd/PdO derived from the increased content of amine groups of NH2-OH-KIE-6 supports. In contrast, the low surface area of NH2-OH-KIE-6 promoted the aggregation of Pd nanoparticles on Pd/NH2-OH-KIE-6 catalysts, which resulted in the lower catalytic stability of Pd/NH2-OH-KIE-6 catalysts than Pd/NH2-KIE-6 catalysts. Thus it was concluded that confinement of Pd nanoparticles to the pores of supports is a more dominant factor to achieve higher catalytic stability, while the initial catalytic activity is affected by the electronic state of Pd nanoparticle determined by the content of amine functional groups on the surface of supports.

UR - http://www.scopus.com/inward/record.url?scp=85060344580&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85060344580&partnerID=8YFLogxK

U2 - 10.1016/j.ijhydene.2018.12.208

DO - 10.1016/j.ijhydene.2018.12.208

M3 - Article

AN - SCOPUS:85060344580

JO - International Journal of Hydrogen Energy

JF - International Journal of Hydrogen Energy

SN - 0360-3199

ER -