Effect of vibrational pre-excitation on sub-femtosecond structural evolution of water cation in 2A1 state

B. Jayachander Rao, Minhaeng Cho

Research output: Contribution to journalArticle

Abstract

We study the effects of vibrational excitation of neutral water molecule on sub-femtosecond nuclear dynamics of the 2A1 electronic state of cationic water and its isotopomers that are induced by high-harmonic generation (HHG) process. Both the photoelectron spectra and the autocorrelation functions of electronically excited states of M2O+ (M = H, D, and T) that are produced by Franck-Condon ionization of vibrationally pre-excited M2O to its 2A1 electronic state are calculated. HHG signals are also calculated from the square of the absolute value of autocorrelation functions. In addition, the ratio of the HHG signal of D2O+ to that of H2O+ and that between T2O+ and H2O+ are calculated with respect to time, for varying initially prepared vibrational state of the corresponding neutral molecule. Vibrational dynamics are notably strong on the 2A1 state of the cationic species, as the initial vibrational quantum number increases. The HHG signal of a heavier isotopomer is larger than that of water when the initial vibrational state is on its ground state. The expectation values of the bond length and bond angle show quasiperiodic oscillations with respect to time, which are ascribed to the observed overall rise in the HHG signals. Exceptionally strong vibrational dynamics observed on the 2A1 state potential energy surface of the cationic water molecule can be attributed to the excitation of water bending mode upon Franck-Condon ionization of the corresponding neutral molecule. Here, the observed peaks in the ratios of the HHG signals are theoretically explained in terms of time-evolving molecular structures at two different turning points of the 2A1 surface. We anticipate that the present computational method of solving time-dependent Schrödinger equation would be of use to provide explanations on both ultrafast and chiroptical HHG spectroscopy of polyatomic molecules with certain handedness.

Original languageEnglish
JournalChemical Physics
DOIs
Publication statusAccepted/In press - 2018 Jan 1

Fingerprint

Harmonic generation
Cations
harmonic generations
cations
Water
water
excitation
Molecules
Electronic states
Autocorrelation
vibrational states
autocorrelation
Ionization
molecules
ionization
handedness
Potential energy surfaces
polyatomic molecules
Bond length
Computational methods

ASJC Scopus subject areas

  • Physics and Astronomy(all)
  • Physical and Theoretical Chemistry

Cite this

Effect of vibrational pre-excitation on sub-femtosecond structural evolution of water cation in 2A1 state. / Jayachander Rao, B.; Cho, Minhaeng.

In: Chemical Physics, 01.01.2018.

Research output: Contribution to journalArticle

@article{59c53b4d5ccb489f8ea72492ea1d2bc3,
title = "Effect of vibrational pre-excitation on sub-femtosecond structural evolution of water cation in 2A1 state",
abstract = "We study the effects of vibrational excitation of neutral water molecule on sub-femtosecond nuclear dynamics of the 2A1 electronic state of cationic water and its isotopomers that are induced by high-harmonic generation (HHG) process. Both the photoelectron spectra and the autocorrelation functions of electronically excited states of M2O+ (M = H, D, and T) that are produced by Franck-Condon ionization of vibrationally pre-excited M2O to its 2A1 electronic state are calculated. HHG signals are also calculated from the square of the absolute value of autocorrelation functions. In addition, the ratio of the HHG signal of D2O+ to that of H2O+ and that between T2O+ and H2O+ are calculated with respect to time, for varying initially prepared vibrational state of the corresponding neutral molecule. Vibrational dynamics are notably strong on the 2A1 state of the cationic species, as the initial vibrational quantum number increases. The HHG signal of a heavier isotopomer is larger than that of water when the initial vibrational state is on its ground state. The expectation values of the bond length and bond angle show quasiperiodic oscillations with respect to time, which are ascribed to the observed overall rise in the HHG signals. Exceptionally strong vibrational dynamics observed on the 2A1 state potential energy surface of the cationic water molecule can be attributed to the excitation of water bending mode upon Franck-Condon ionization of the corresponding neutral molecule. Here, the observed peaks in the ratios of the HHG signals are theoretically explained in terms of time-evolving molecular structures at two different turning points of the 2A1 surface. We anticipate that the present computational method of solving time-dependent Schr{\"o}dinger equation would be of use to provide explanations on both ultrafast and chiroptical HHG spectroscopy of polyatomic molecules with certain handedness.",
author = "{Jayachander Rao}, B. and Minhaeng Cho",
year = "2018",
month = "1",
day = "1",
doi = "10.1016/j.chemphys.2018.06.010",
language = "English",
journal = "Chemical Physics",
issn = "0301-0104",
publisher = "Elsevier",

}

TY - JOUR

T1 - Effect of vibrational pre-excitation on sub-femtosecond structural evolution of water cation in 2A1 state

AU - Jayachander Rao, B.

AU - Cho, Minhaeng

PY - 2018/1/1

Y1 - 2018/1/1

N2 - We study the effects of vibrational excitation of neutral water molecule on sub-femtosecond nuclear dynamics of the 2A1 electronic state of cationic water and its isotopomers that are induced by high-harmonic generation (HHG) process. Both the photoelectron spectra and the autocorrelation functions of electronically excited states of M2O+ (M = H, D, and T) that are produced by Franck-Condon ionization of vibrationally pre-excited M2O to its 2A1 electronic state are calculated. HHG signals are also calculated from the square of the absolute value of autocorrelation functions. In addition, the ratio of the HHG signal of D2O+ to that of H2O+ and that between T2O+ and H2O+ are calculated with respect to time, for varying initially prepared vibrational state of the corresponding neutral molecule. Vibrational dynamics are notably strong on the 2A1 state of the cationic species, as the initial vibrational quantum number increases. The HHG signal of a heavier isotopomer is larger than that of water when the initial vibrational state is on its ground state. The expectation values of the bond length and bond angle show quasiperiodic oscillations with respect to time, which are ascribed to the observed overall rise in the HHG signals. Exceptionally strong vibrational dynamics observed on the 2A1 state potential energy surface of the cationic water molecule can be attributed to the excitation of water bending mode upon Franck-Condon ionization of the corresponding neutral molecule. Here, the observed peaks in the ratios of the HHG signals are theoretically explained in terms of time-evolving molecular structures at two different turning points of the 2A1 surface. We anticipate that the present computational method of solving time-dependent Schrödinger equation would be of use to provide explanations on both ultrafast and chiroptical HHG spectroscopy of polyatomic molecules with certain handedness.

AB - We study the effects of vibrational excitation of neutral water molecule on sub-femtosecond nuclear dynamics of the 2A1 electronic state of cationic water and its isotopomers that are induced by high-harmonic generation (HHG) process. Both the photoelectron spectra and the autocorrelation functions of electronically excited states of M2O+ (M = H, D, and T) that are produced by Franck-Condon ionization of vibrationally pre-excited M2O to its 2A1 electronic state are calculated. HHG signals are also calculated from the square of the absolute value of autocorrelation functions. In addition, the ratio of the HHG signal of D2O+ to that of H2O+ and that between T2O+ and H2O+ are calculated with respect to time, for varying initially prepared vibrational state of the corresponding neutral molecule. Vibrational dynamics are notably strong on the 2A1 state of the cationic species, as the initial vibrational quantum number increases. The HHG signal of a heavier isotopomer is larger than that of water when the initial vibrational state is on its ground state. The expectation values of the bond length and bond angle show quasiperiodic oscillations with respect to time, which are ascribed to the observed overall rise in the HHG signals. Exceptionally strong vibrational dynamics observed on the 2A1 state potential energy surface of the cationic water molecule can be attributed to the excitation of water bending mode upon Franck-Condon ionization of the corresponding neutral molecule. Here, the observed peaks in the ratios of the HHG signals are theoretically explained in terms of time-evolving molecular structures at two different turning points of the 2A1 surface. We anticipate that the present computational method of solving time-dependent Schrödinger equation would be of use to provide explanations on both ultrafast and chiroptical HHG spectroscopy of polyatomic molecules with certain handedness.

UR - http://www.scopus.com/inward/record.url?scp=85048776758&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85048776758&partnerID=8YFLogxK

U2 - 10.1016/j.chemphys.2018.06.010

DO - 10.1016/j.chemphys.2018.06.010

M3 - Article

JO - Chemical Physics

JF - Chemical Physics

SN - 0301-0104

ER -