Effects of adsorption onto silica sand particles on the hydrolysis of tetracycline antibiotics

Hyun Joong Kang, Mi Young Lim, Jung Hwan Kwon

Research output: Contribution to journalArticle

16 Citations (Scopus)

Abstract

Due to high usage of tetracycline antibiotics, concerns have been raised about their environmental fate. In this study, potential changes in the pseudo-first-order hydrolysis rate constants for three tetracyclines, tetracycline (TC), oxytetracycline (OTC) and chlortetracycline (CTC), were evaluated by measuring the rate constants in batch and column leaching experiments. The first-order hydrolysis rate constants were measured at pH 5, 7, and 9 using batch tests. The values were highest at pH 7 for all three tetracyclines (0.0030 ± 0.0004, 0.0042 ± 0.0001, and 0.0323 ± 0.0003 h-1 for TC, OTC, and CTC, respectively), indicating relatively short environmental half-lives of tetracyclines. Interestingly, it was found that the rates of degradation of the parent tetracyclines were much faster when silica sand was present in a batch solution or when the solution was passed through a silica column. For example, the ratios of the first-order degradation rate constants obtained in the column experiments to those in batch experiments were 13.2, 2.1, and 2.0 for TC, OTC, and CTC at a volumetric flow rate of 0.08 mL h-1, with an observed tendency for this ratio to increase with an increased flow rate. This indicates that the silica surface may serve as a catalyst for hydrolysis and that the actual environmental half-lives of tetracycline antibiotics could be shorter than those estimated from laboratory hydrolysis rate constants using the standard batch protocol. Furthermore, the toxicity of the column effluent containing hydrolysis metabolites was assessed using bioluminescence inhibition in Vibrio fischeri. It was estimated that the toxicity of the metabolites of CTC was lower than that of their parent compound, whereas the toxicity of metabolites of TC and OTC was as high as or higher than that of their parent compounds.

Original languageEnglish
Pages (from-to)1853-1859
Number of pages7
JournalJournal of Environmental Monitoring
Volume14
Issue number7
DOIs
Publication statusPublished - 2012 Jul
Externally publishedYes

ASJC Scopus subject areas

  • Public Health, Environmental and Occupational Health
  • Management, Monitoring, Policy and Law

Fingerprint Dive into the research topics of 'Effects of adsorption onto silica sand particles on the hydrolysis of tetracycline antibiotics'. Together they form a unique fingerprint.

  • Cite this