TY - JOUR
T1 - Effects of exercise training and detraining on atheromatous matrix metalloproteinase activity in mice
AU - Kim, Jiwon
AU - Jang, Hee Jeong
AU - Schellingerhout, Dawid
AU - Kang, Jeong Wook
AU - Choi, Seungbum
AU - Oh, Hyerin
AU - Kim, Eo Jin
AU - Lee, Su Kyoung
AU - Lee, Ji Sung
AU - Kwon, Ick Chan
AU - Kim, Kwangmeyung
AU - Koh, Young Jun
AU - Ryu, Wi Sun
AU - Kim, Dong Eog
PY - 2020/4
Y1 - 2020/4
N2 - Background and aims: Exercise training (ET) helps treat atherosclerosis. However, many patients stop regular ET for various reasons. The effect of detraining on atherosclerosis is not well studied. We examined the effects of ET vs. short-term detraining on atheromatous matrix-metalloproteinase (MMP) activity in preexisting plaque and circulating cytokines/lipids. Methods and results: Eighteen-week-old apolipoprotein-E−/− mice (n = 56) on a Western diet underwent: 1) ET for 6-weeks (ET5+1), 2) ET for 5-weeks and detraining for 1-week (ET5+0), 3) ET for the last 1-week (ET0+1), or 4) no treadmill ET at all for 6-weeks (ET0+0). Atheromatous MMP-activity was visualized using molecular imaging with an MMP-2/9-activatable near-infrared-fluorescent probe. Compared with no ET (ET0+0), regular ET (ET5+1) decreased carotid atheromatous MMP activity, but this protective effect was significantly blunted by short-term detraining (ET5+0). Short-term detraining after longer-term ET showed a reduction in MMP-activity similar to short-term ET (ET0+1). Blood levels of lipids and cytokines paralleled the molecular imaging results: exercise caused higher levels of high-density lipoprotein, adiponectin, and interleukin-10 and lower levels of vascular cell adhesion molecule, monocyte chemoattractant protein-1, interleukin-1β, and low-density lipoprotein. However, this beneficial effect was short-lived, with the ET5+0 group being similar to the ET0+0 group, and the ET0+1 group being similar to the ET5+1 group. The effect of exercise can be modeled with an exponential-decay of the protective factor of about 15%/day. Conclusions: Even short-term detraining reduces atheroprotective effects, and tips the balance towards atherosclerosis. This suggests that ET, to be effective, needs to be prolonged and regular, and that detraining should be avoided.
AB - Background and aims: Exercise training (ET) helps treat atherosclerosis. However, many patients stop regular ET for various reasons. The effect of detraining on atherosclerosis is not well studied. We examined the effects of ET vs. short-term detraining on atheromatous matrix-metalloproteinase (MMP) activity in preexisting plaque and circulating cytokines/lipids. Methods and results: Eighteen-week-old apolipoprotein-E−/− mice (n = 56) on a Western diet underwent: 1) ET for 6-weeks (ET5+1), 2) ET for 5-weeks and detraining for 1-week (ET5+0), 3) ET for the last 1-week (ET0+1), or 4) no treadmill ET at all for 6-weeks (ET0+0). Atheromatous MMP-activity was visualized using molecular imaging with an MMP-2/9-activatable near-infrared-fluorescent probe. Compared with no ET (ET0+0), regular ET (ET5+1) decreased carotid atheromatous MMP activity, but this protective effect was significantly blunted by short-term detraining (ET5+0). Short-term detraining after longer-term ET showed a reduction in MMP-activity similar to short-term ET (ET0+1). Blood levels of lipids and cytokines paralleled the molecular imaging results: exercise caused higher levels of high-density lipoprotein, adiponectin, and interleukin-10 and lower levels of vascular cell adhesion molecule, monocyte chemoattractant protein-1, interleukin-1β, and low-density lipoprotein. However, this beneficial effect was short-lived, with the ET5+0 group being similar to the ET0+0 group, and the ET0+1 group being similar to the ET5+1 group. The effect of exercise can be modeled with an exponential-decay of the protective factor of about 15%/day. Conclusions: Even short-term detraining reduces atheroprotective effects, and tips the balance towards atherosclerosis. This suggests that ET, to be effective, needs to be prolonged and regular, and that detraining should be avoided.
KW - Atherosclerosis
KW - Cytokines
KW - Exercise training
KW - Matrix metalloproteinase
KW - Molecular imaging
UR - http://www.scopus.com/inward/record.url?scp=85081389557&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85081389557&partnerID=8YFLogxK
U2 - 10.1016/j.atherosclerosis.2020.02.022
DO - 10.1016/j.atherosclerosis.2020.02.022
M3 - Article
C2 - 32182440
AN - SCOPUS:85081389557
VL - 299
SP - 15
EP - 23
JO - Atherosclerosis
JF - Atherosclerosis
SN - 0021-9150
ER -