Effects of multi-walled carbon nanotube (MWCNT) dispersion and compatibilizer on the electrical and rheological properties of polycarbonate/poly(acrylonitrile-butadiene-styrene)/MWCNT composites

In Soo Han, Yun Kyun Lee, Heon Sang Lee, Ho Gyu Yoon, Woo Nyon Kim

Research output: Contribution to journalArticle

27 Citations (Scopus)

Abstract

In this study, the effects of multi-walled carbon nanotube (MWCNT) dispersion and poly(styrene-co-acrylonitrile)-g-maleic anhydride (SAN-g-MAH) as a compatibilizer on the electrical conductivity, electromagnetic interference shielding effectiveness (EMI SE), and rheological properties of polycarbonate (PC)/poly(acrylonitrile-butadiene-styrene) (ABS)/MWCNT composites were investigated. The morphological results from the scanning and transmission electron microscope images showed that the droplet size of the ABS decreased when the SAN-g-MAH (5 phr) was added to the PC/ABS (80/20) blend. This result suggests that the SAN-g-MAH acts as an effective compatibilizer in the PC/ABS blend. Also, the MWCNT appeared to be located more in the ABS phase (dispersed phase) than in the PC phase (continuous phase). The interfacial tension of the ABS/MWCNT composite was lower than that of the PC-MWCNT composite, and the lower value of interfacial tension of the ABS/MWCNT composite affected the preferred location of the MWCNT in the ABS phase more than in the PC phase. The electrical conductivities and EMI SE of the PC/ABS/MWCNT composite with the compatibilizer were higher than those of the composite without compatibilizer. The complex viscosity of the PC/ABS/MWCNT composite containing the SAN-g-MAH increased with the frequency compared to that of the composite without SAN-g-MAH. This result is possibly due to the increased degree of MWCNT dispersion. The result of rheological properties is consistent with the results of the morphology, electrical conductivity, and EMI SE of the PC/ABS/MWCNT composite.

Original languageEnglish
Pages (from-to)4522-4529
Number of pages8
JournalJournal of Materials Science
Volume49
Issue number13
DOIs
Publication statusPublished - 2014 Jan 1

Fingerprint

polycarbonate
Acrylonitrile
Carbon Nanotubes
Styrene
Compatibilizers
Polycarbonates
Butadiene
Carbon nanotubes
Composite materials
Maleic Anhydrides
Maleic anhydride
Signal interference
Shielding
ABS resin

ASJC Scopus subject areas

  • Materials Science(all)
  • Mechanics of Materials
  • Mechanical Engineering

Cite this

@article{fba0f83fe94e4aaea90a47d08c6eda17,
title = "Effects of multi-walled carbon nanotube (MWCNT) dispersion and compatibilizer on the electrical and rheological properties of polycarbonate/poly(acrylonitrile-butadiene-styrene)/MWCNT composites",
abstract = "In this study, the effects of multi-walled carbon nanotube (MWCNT) dispersion and poly(styrene-co-acrylonitrile)-g-maleic anhydride (SAN-g-MAH) as a compatibilizer on the electrical conductivity, electromagnetic interference shielding effectiveness (EMI SE), and rheological properties of polycarbonate (PC)/poly(acrylonitrile-butadiene-styrene) (ABS)/MWCNT composites were investigated. The morphological results from the scanning and transmission electron microscope images showed that the droplet size of the ABS decreased when the SAN-g-MAH (5 phr) was added to the PC/ABS (80/20) blend. This result suggests that the SAN-g-MAH acts as an effective compatibilizer in the PC/ABS blend. Also, the MWCNT appeared to be located more in the ABS phase (dispersed phase) than in the PC phase (continuous phase). The interfacial tension of the ABS/MWCNT composite was lower than that of the PC-MWCNT composite, and the lower value of interfacial tension of the ABS/MWCNT composite affected the preferred location of the MWCNT in the ABS phase more than in the PC phase. The electrical conductivities and EMI SE of the PC/ABS/MWCNT composite with the compatibilizer were higher than those of the composite without compatibilizer. The complex viscosity of the PC/ABS/MWCNT composite containing the SAN-g-MAH increased with the frequency compared to that of the composite without SAN-g-MAH. This result is possibly due to the increased degree of MWCNT dispersion. The result of rheological properties is consistent with the results of the morphology, electrical conductivity, and EMI SE of the PC/ABS/MWCNT composite.",
author = "Han, {In Soo} and Lee, {Yun Kyun} and Lee, {Heon Sang} and Yoon, {Ho Gyu} and Kim, {Woo Nyon}",
year = "2014",
month = "1",
day = "1",
doi = "10.1007/s10853-014-8152-0",
language = "English",
volume = "49",
pages = "4522--4529",
journal = "Journal of Materials Science",
issn = "0022-2461",
publisher = "Springer Netherlands",
number = "13",

}

TY - JOUR

T1 - Effects of multi-walled carbon nanotube (MWCNT) dispersion and compatibilizer on the electrical and rheological properties of polycarbonate/poly(acrylonitrile-butadiene-styrene)/MWCNT composites

AU - Han, In Soo

AU - Lee, Yun Kyun

AU - Lee, Heon Sang

AU - Yoon, Ho Gyu

AU - Kim, Woo Nyon

PY - 2014/1/1

Y1 - 2014/1/1

N2 - In this study, the effects of multi-walled carbon nanotube (MWCNT) dispersion and poly(styrene-co-acrylonitrile)-g-maleic anhydride (SAN-g-MAH) as a compatibilizer on the electrical conductivity, electromagnetic interference shielding effectiveness (EMI SE), and rheological properties of polycarbonate (PC)/poly(acrylonitrile-butadiene-styrene) (ABS)/MWCNT composites were investigated. The morphological results from the scanning and transmission electron microscope images showed that the droplet size of the ABS decreased when the SAN-g-MAH (5 phr) was added to the PC/ABS (80/20) blend. This result suggests that the SAN-g-MAH acts as an effective compatibilizer in the PC/ABS blend. Also, the MWCNT appeared to be located more in the ABS phase (dispersed phase) than in the PC phase (continuous phase). The interfacial tension of the ABS/MWCNT composite was lower than that of the PC-MWCNT composite, and the lower value of interfacial tension of the ABS/MWCNT composite affected the preferred location of the MWCNT in the ABS phase more than in the PC phase. The electrical conductivities and EMI SE of the PC/ABS/MWCNT composite with the compatibilizer were higher than those of the composite without compatibilizer. The complex viscosity of the PC/ABS/MWCNT composite containing the SAN-g-MAH increased with the frequency compared to that of the composite without SAN-g-MAH. This result is possibly due to the increased degree of MWCNT dispersion. The result of rheological properties is consistent with the results of the morphology, electrical conductivity, and EMI SE of the PC/ABS/MWCNT composite.

AB - In this study, the effects of multi-walled carbon nanotube (MWCNT) dispersion and poly(styrene-co-acrylonitrile)-g-maleic anhydride (SAN-g-MAH) as a compatibilizer on the electrical conductivity, electromagnetic interference shielding effectiveness (EMI SE), and rheological properties of polycarbonate (PC)/poly(acrylonitrile-butadiene-styrene) (ABS)/MWCNT composites were investigated. The morphological results from the scanning and transmission electron microscope images showed that the droplet size of the ABS decreased when the SAN-g-MAH (5 phr) was added to the PC/ABS (80/20) blend. This result suggests that the SAN-g-MAH acts as an effective compatibilizer in the PC/ABS blend. Also, the MWCNT appeared to be located more in the ABS phase (dispersed phase) than in the PC phase (continuous phase). The interfacial tension of the ABS/MWCNT composite was lower than that of the PC-MWCNT composite, and the lower value of interfacial tension of the ABS/MWCNT composite affected the preferred location of the MWCNT in the ABS phase more than in the PC phase. The electrical conductivities and EMI SE of the PC/ABS/MWCNT composite with the compatibilizer were higher than those of the composite without compatibilizer. The complex viscosity of the PC/ABS/MWCNT composite containing the SAN-g-MAH increased with the frequency compared to that of the composite without SAN-g-MAH. This result is possibly due to the increased degree of MWCNT dispersion. The result of rheological properties is consistent with the results of the morphology, electrical conductivity, and EMI SE of the PC/ABS/MWCNT composite.

UR - http://www.scopus.com/inward/record.url?scp=84899633529&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84899633529&partnerID=8YFLogxK

U2 - 10.1007/s10853-014-8152-0

DO - 10.1007/s10853-014-8152-0

M3 - Article

VL - 49

SP - 4522

EP - 4529

JO - Journal of Materials Science

JF - Journal of Materials Science

SN - 0022-2461

IS - 13

ER -