Effects of the ultra-high-frequency electrical field radiofrequency device on mouse skin: A histologic and molecular study

Miri Kim, Kyung Eun Kim, Seo Won Jeong, Se Won Hwang, Hyunmu Jo, Jahyung Lee, Dae Ho Cho, Hyun Jeong Park

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

Background: Radiofrequency technology is one of the most recently developed methods for noninvasive skin tightening and facial contouring, and works by generating thermal energy in the deep dermis. Although clinical improvements have been reported using radiofrequency devices, there are few histologic and molecular studies about the mechanisms of dermal collagen remodeling. The authors investigated the histologic effects of an ultra-high-frequency electrical field (40.68 MHz) radiofrequency device (Polargen) on collagen remodeling in hairless mouse skin and evaluated its relative molecular mechanism. Methods: The radiofrequency was applied to the dorsal skin of hairless mice three times per week for 2 weeks. At 21 days after initial treatment, treated skin and nontreated control skin samples were excised for semiquantitative analysis of histologic features, including collagen. The authors also checked the mRNA expression levels of collagen type 1, transforming growth factor (TGF)-β, matrix metalloproteinase-1, vascular endothelial growth factor, tumor necrosis factor-α, and interleukin-1. Results: Histologic examination revealed epidermal hyperplasia, increased collagen staining, and fat atrophy in treated skin area compared with the nontreated skin area. In addition, mRNA expression of collagen type TGF-β, and vascular endothelial growth factor in radiofrequency-treated areas was significantly increased compared with that in untreated control areas (p < 0.05, p < 0.05, and p < 0.01, respectively). Conclusions: These results suggest that the device may facilitate replacement of subcutaneous fat tissue with new collagen in association with the increased mRNA levels in TGF-β and vascular endothelial growth factor. Therefore, this device may effectively reduce adipose tissue and achieve facial contouring in addition to skin tightening.

Original languageEnglish
Pages (from-to)248e-255e
JournalPlastic and reconstructive surgery
Volume138
Issue number2
DOIs
Publication statusPublished - 2016 Aug 1
Externally publishedYes

ASJC Scopus subject areas

  • Surgery

Fingerprint Dive into the research topics of 'Effects of the ultra-high-frequency electrical field radiofrequency device on mouse skin: A histologic and molecular study'. Together they form a unique fingerprint.

  • Cite this