Effects of transformation-induced plasticity (TRIP) on tensile property improvement of Fe45Co30Cr10V10Ni5-xMnx high-entropy alloys

Junha Yang, Yong Hee Jo, Dae Woong Kim, Won Mi Choi, Hyoung Seop Kim, Byeong Joo Lee, Seok Su Sohn, Sunghak Lee

Research output: Contribution to journalArticle

Abstract

A new metastable high-entropy alloy (HEA) system was suggested by thermodynamic calculations based on the Gibbs free energies of FCC and HCP and the associated stacking fault energy (SFE). The Fe45Co30Cr10V10Ni5-xMnx (x = 0, 2.5, and 5 at.%) alloys were fabricated, and their tensile properties were evaluated at room and cryogenic temperatures. The relationship between the deformation mechanism and strain hardening behavior was investigated to reveal the role of deformation-induced martensitic transformation on tensile properties. The difference in Gibbs energy decreases with increasing Mn content, leading to the decreased SFE in sequence. At room temperature, ~60% of BCC martensite in the 5Mn HEA contributes effectively to the steady strain hardening, suppressing the plastic instability. This TRIP effect achieves much eminence in the cryogenic deformation, enabling the tensile strength to reach over 1.6 GPa due to 100% of BCC and HCP martensite. In addition to the fraction of martensite, the increased Mn content reduces a critical strain required to trigger the martensitic transformation and then raises the transformation rate. The present findings may provide a guide for the design of metastable HEAs to enhance tensile properties for cryogenic applications through adjusting SFE and TRIP effect.

Original languageEnglish
Article number138809
JournalMaterials Science and Engineering A
Volume772
DOIs
Publication statusPublished - 2020 Jan 20

    Fingerprint

Keywords

  • High-entropy alloy (HEA)
  • Stacking fault energy (SFE)
  • Thermodynamic calculation
  • Transformation-induced plasticity (TRIP)

ASJC Scopus subject areas

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Cite this