Efficient groupwise registration of MR brain images via Hierarchical graph set Shrinkage

Pei Dong, Xiaohuan Cao, Pew Thian Yap, Dinggang Shen

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Accurate and efficient groupwise registration is important for population analysis. Current groupwise registration methods suffer from high computational cost, which hinders their application to large image datasets. To alleviate the computational burden while delivering accurate groupwise registration result, we propose to use a hierarchical graph set to model the complex image distribution with possibly large anatomical variations, and then turn the groupwise registration problem as a series of simple-to-solve graph shrinkage problems. Specifically, first, we divide the input images into a set of image clusters hierarchically, where images within each image cluster have similar anatomical appearances whereas images falling into different image clusters have varying anatomical appearances. After clustering, two types of graphs, i.e., intra-graph and inter-graph, are employed to hierarchically model the image distribution both within and across the image clusters. The constructed hierarchical graph set divides the registration problem of the whole image set into a series of simple-to-solve registration problems, where the entire registration process can be solved accurately and efficiently. The final deformation pathway of each image to the estimated population center can be obtained by composing each part of the deformation pathway along the hierarchical graph set. To evaluate our proposed method, we performed registration of a hundred of brain images with large anatomical variations. The results indicate that our method yields significant improvement in registration performance over state-of-the-art groupwise registration methods.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2018 - 21st International Conference, 2018, Proceedings
EditorsJulia A. Schnabel, Christos Davatzikos, Carlos Alberola-López, Gabor Fichtinger, Alejandro F. Frangi
PublisherSpringer Verlag
Pages819-826
Number of pages8
ISBN (Print)9783030009274
DOIs
Publication statusPublished - 2018 Jan 1
Externally publishedYes
Event21st International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2018 - Granada, Spain
Duration: 2018 Sep 162018 Sep 20

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11070 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Other

Other21st International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2018
CountrySpain
CityGranada
Period18/9/1618/9/20

Fingerprint

Shrinkage
Registration
Brain
Graph in graph theory
Costs
Divides
Pathway
Series
Computational Cost
Clustering
Entire

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Computer Science(all)

Cite this

Dong, P., Cao, X., Yap, P. T., & Shen, D. (2018). Efficient groupwise registration of MR brain images via Hierarchical graph set Shrinkage. In J. A. Schnabel, C. Davatzikos, C. Alberola-López, G. Fichtinger, & A. F. Frangi (Eds.), Medical Image Computing and Computer Assisted Intervention – MICCAI 2018 - 21st International Conference, 2018, Proceedings (pp. 819-826). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 11070 LNCS). Springer Verlag. https://doi.org/10.1007/978-3-030-00928-1_92

Efficient groupwise registration of MR brain images via Hierarchical graph set Shrinkage. / Dong, Pei; Cao, Xiaohuan; Yap, Pew Thian; Shen, Dinggang.

Medical Image Computing and Computer Assisted Intervention – MICCAI 2018 - 21st International Conference, 2018, Proceedings. ed. / Julia A. Schnabel; Christos Davatzikos; Carlos Alberola-López; Gabor Fichtinger; Alejandro F. Frangi. Springer Verlag, 2018. p. 819-826 (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 11070 LNCS).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Dong, P, Cao, X, Yap, PT & Shen, D 2018, Efficient groupwise registration of MR brain images via Hierarchical graph set Shrinkage. in JA Schnabel, C Davatzikos, C Alberola-López, G Fichtinger & AF Frangi (eds), Medical Image Computing and Computer Assisted Intervention – MICCAI 2018 - 21st International Conference, 2018, Proceedings. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 11070 LNCS, Springer Verlag, pp. 819-826, 21st International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2018, Granada, Spain, 18/9/16. https://doi.org/10.1007/978-3-030-00928-1_92
Dong P, Cao X, Yap PT, Shen D. Efficient groupwise registration of MR brain images via Hierarchical graph set Shrinkage. In Schnabel JA, Davatzikos C, Alberola-López C, Fichtinger G, Frangi AF, editors, Medical Image Computing and Computer Assisted Intervention – MICCAI 2018 - 21st International Conference, 2018, Proceedings. Springer Verlag. 2018. p. 819-826. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)). https://doi.org/10.1007/978-3-030-00928-1_92
Dong, Pei ; Cao, Xiaohuan ; Yap, Pew Thian ; Shen, Dinggang. / Efficient groupwise registration of MR brain images via Hierarchical graph set Shrinkage. Medical Image Computing and Computer Assisted Intervention – MICCAI 2018 - 21st International Conference, 2018, Proceedings. editor / Julia A. Schnabel ; Christos Davatzikos ; Carlos Alberola-López ; Gabor Fichtinger ; Alejandro F. Frangi. Springer Verlag, 2018. pp. 819-826 (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)).
@inproceedings{8dc8710a712c4986af0d78fabfce3b61,
title = "Efficient groupwise registration of MR brain images via Hierarchical graph set Shrinkage",
abstract = "Accurate and efficient groupwise registration is important for population analysis. Current groupwise registration methods suffer from high computational cost, which hinders their application to large image datasets. To alleviate the computational burden while delivering accurate groupwise registration result, we propose to use a hierarchical graph set to model the complex image distribution with possibly large anatomical variations, and then turn the groupwise registration problem as a series of simple-to-solve graph shrinkage problems. Specifically, first, we divide the input images into a set of image clusters hierarchically, where images within each image cluster have similar anatomical appearances whereas images falling into different image clusters have varying anatomical appearances. After clustering, two types of graphs, i.e., intra-graph and inter-graph, are employed to hierarchically model the image distribution both within and across the image clusters. The constructed hierarchical graph set divides the registration problem of the whole image set into a series of simple-to-solve registration problems, where the entire registration process can be solved accurately and efficiently. The final deformation pathway of each image to the estimated population center can be obtained by composing each part of the deformation pathway along the hierarchical graph set. To evaluate our proposed method, we performed registration of a hundred of brain images with large anatomical variations. The results indicate that our method yields significant improvement in registration performance over state-of-the-art groupwise registration methods.",
author = "Pei Dong and Xiaohuan Cao and Yap, {Pew Thian} and Dinggang Shen",
year = "2018",
month = "1",
day = "1",
doi = "10.1007/978-3-030-00928-1_92",
language = "English",
isbn = "9783030009274",
series = "Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)",
publisher = "Springer Verlag",
pages = "819--826",
editor = "Schnabel, {Julia A.} and Christos Davatzikos and Carlos Alberola-L{\'o}pez and Gabor Fichtinger and Frangi, {Alejandro F.}",
booktitle = "Medical Image Computing and Computer Assisted Intervention – MICCAI 2018 - 21st International Conference, 2018, Proceedings",

}

TY - GEN

T1 - Efficient groupwise registration of MR brain images via Hierarchical graph set Shrinkage

AU - Dong, Pei

AU - Cao, Xiaohuan

AU - Yap, Pew Thian

AU - Shen, Dinggang

PY - 2018/1/1

Y1 - 2018/1/1

N2 - Accurate and efficient groupwise registration is important for population analysis. Current groupwise registration methods suffer from high computational cost, which hinders their application to large image datasets. To alleviate the computational burden while delivering accurate groupwise registration result, we propose to use a hierarchical graph set to model the complex image distribution with possibly large anatomical variations, and then turn the groupwise registration problem as a series of simple-to-solve graph shrinkage problems. Specifically, first, we divide the input images into a set of image clusters hierarchically, where images within each image cluster have similar anatomical appearances whereas images falling into different image clusters have varying anatomical appearances. After clustering, two types of graphs, i.e., intra-graph and inter-graph, are employed to hierarchically model the image distribution both within and across the image clusters. The constructed hierarchical graph set divides the registration problem of the whole image set into a series of simple-to-solve registration problems, where the entire registration process can be solved accurately and efficiently. The final deformation pathway of each image to the estimated population center can be obtained by composing each part of the deformation pathway along the hierarchical graph set. To evaluate our proposed method, we performed registration of a hundred of brain images with large anatomical variations. The results indicate that our method yields significant improvement in registration performance over state-of-the-art groupwise registration methods.

AB - Accurate and efficient groupwise registration is important for population analysis. Current groupwise registration methods suffer from high computational cost, which hinders their application to large image datasets. To alleviate the computational burden while delivering accurate groupwise registration result, we propose to use a hierarchical graph set to model the complex image distribution with possibly large anatomical variations, and then turn the groupwise registration problem as a series of simple-to-solve graph shrinkage problems. Specifically, first, we divide the input images into a set of image clusters hierarchically, where images within each image cluster have similar anatomical appearances whereas images falling into different image clusters have varying anatomical appearances. After clustering, two types of graphs, i.e., intra-graph and inter-graph, are employed to hierarchically model the image distribution both within and across the image clusters. The constructed hierarchical graph set divides the registration problem of the whole image set into a series of simple-to-solve registration problems, where the entire registration process can be solved accurately and efficiently. The final deformation pathway of each image to the estimated population center can be obtained by composing each part of the deformation pathway along the hierarchical graph set. To evaluate our proposed method, we performed registration of a hundred of brain images with large anatomical variations. The results indicate that our method yields significant improvement in registration performance over state-of-the-art groupwise registration methods.

UR - http://www.scopus.com/inward/record.url?scp=85054055897&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85054055897&partnerID=8YFLogxK

U2 - 10.1007/978-3-030-00928-1_92

DO - 10.1007/978-3-030-00928-1_92

M3 - Conference contribution

SN - 9783030009274

T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

SP - 819

EP - 826

BT - Medical Image Computing and Computer Assisted Intervention – MICCAI 2018 - 21st International Conference, 2018, Proceedings

A2 - Schnabel, Julia A.

A2 - Davatzikos, Christos

A2 - Alberola-López, Carlos

A2 - Fichtinger, Gabor

A2 - Frangi, Alejandro F.

PB - Springer Verlag

ER -